研究最多的二级神经组织者是地缘组织者,该组织者位于神经管的中脑过渡中,并控制前后脑前后和中脑区域化。OTX2和GBX2表达式对于定位组织者和诱导FGF8的分子相互作用的建立是基本的。我们在这里提出的证据表明OTX2和GBX2在地峡区域具有重叠的表达。该区域是诱导FGF8表达的横向结构域。地峡中产生的FGF8蛋白稳定并上调GBX2表达,从而下调OTX2表达。GBX2/OTX2极限的电感效应保持FGF8表达稳定,因此在PAX2,EN1,2和WNT1的表达中保持了积极的作用。Q 2001 Elsevier Science Ireland Ltd.保留所有权利。Q 2001 Elsevier Science Ireland Ltd.保留所有权利。
摘要在过去十年中,通过一系列动物模型在功能水平上鉴定并表征了许多参与大脑诱导,规范和区域化的基因。在这些基因中,OTX1和OTX2,果蝇正畸形(OTD)基因的两个鼠类同源物,编码转录因子,在鼻脑的形态发生中起关键作用。经典的敲除研究表明,OTX2对于早期规范和随后的前神经板的维护至关重要,而OTX1主要是正常的皮质生成和感官器官发育所必需的。将两个基因产物的最小阈值正确地构成前脑的构图和地质组织者的定位。第三基因,骨科(OTP)是控制神经内分泌下丘脑发育的遗传途径的关键要素。本综述介绍了OTX1,OTX2和OTP函数的全面分析,以及otx基因被果蝇同源物otd的模型所暗示的可能的进化含义。
摘要:我们研究了通过 CRISPR-Cas9 合子电穿孔在小反刍动物中进行单步基因组编辑的可能性。我们利用双 sgRNA 方法靶向绵羊胚胎中的 SOCS2 和 PDX1 以及山羊胚胎中的 OTX2。比较了在胚胎发育的四个不同时间进行的显微注射和三种不同电穿孔设置的基因编辑效率。在受精后 6 小时对绵羊合子进行电穿孔,使用包括短高压(穿孔)和长低压(转移)脉冲的设置,可以有效产生 SOCS2 敲除囊胚。CRISPR/Cas9 电穿孔后的突变率为 95.6% ± 8%,包括 95.4% ± 9% 的双等位基因突变;相比之下,使用显微注射时分别为 82.3% ± 8% 和 25% ± 10%。我们还成功破坏了绵羊的 PDX1 基因和山羊胚胎的 OTX2 基因。PDX1 的双等位基因突变率为 81 ± 5%,OTX2 的双等位基因突变率为 85% ± 6%。总之,利用单步 CRISPR-Cas9 合子电穿孔,我们成功地在小反刍动物胚胎基因组中引入了双等位基因缺失。
摘要:细胞类型之间的转分化依赖于基于知识的搜索最佳重编程因素。我们最近的研究发现,ASCL1,MiR9/9*-124,NPTB shRNA和p53 shRNA的过表达有效地将人皮肤成纤维细胞转换为神经元。通过分析人类皮肤成纤维细胞的纵向RNA-seq数据通过这些重编程因子的各种组合进行转化,我们构建了基因调节网络(GRN)模型,捕获了对神经元转化重要的高阶信息。GRN中基因群落和转录因子(TF)的检查确定OTX2和LMX1A是转化为神经元的关键调节剂,因为它们与与神经元发育和分化功能相关的基因的连接最强。 我们通过实验证实了OTX2和LMX1A的关键作用,因为它们的敲低显着损害了转换。 研究表明,GRN模型有效地扩大了人类皮肤成纤维细胞转差为神经元的经验发现最佳重编程因子。 这种方法的进一步改进可以确定直接细胞转换的普遍适用原理。GRN中基因群落和转录因子(TF)的检查确定OTX2和LMX1A是转化为神经元的关键调节剂,因为它们与与神经元发育和分化功能相关的基因的连接最强。我们通过实验证实了OTX2和LMX1A的关键作用,因为它们的敲低显着损害了转换。研究表明,GRN模型有效地扩大了人类皮肤成纤维细胞转差为神经元的经验发现最佳重编程因子。这种方法的进一步改进可以确定直接细胞转换的普遍适用原理。
脊椎动物视觉系统的光感受器的发展受复杂的转录调节网络控制。otx2在有丝分裂视网膜祖细胞(RPC)中表达,并控制感光体发生。由OTX2激活的CRX在细胞周期出口后在感光前体中表达。neurod1也存在于可以指定为杆和锥形光感受器亚型中的光感受器前体中。NRL,并调节包括孤儿核受体NR2E3在内的下游杆特异性基因,该基因进一步激活了杆特异性基因并同时抑制了锥体特异性基因。锥形亚型规范也受到诸如THRB和RXRG等几个转录因子的相互作用的调节。这些关键转录因子中的突变是出生时眼部缺陷的原因,例如微感染和遗传感受器疾病,例如Leber先天性症状(LCA),色素性视网膜炎(RP)和盟友性疾病。特别是,许多突变是以常染色体主导方式遗传的,包括CRX和NRL中的大多数错义突变。在这篇综述中,我们描述了与上述转录因子中突变相关的光感受器缺陷的光谱,并总结了当前对致病突变下的分子机制的知识。终于,我们考虑了理解基因型 - 表型相关性和轮廓途径的杰出差距,以实现对治疗策略的未来研究。
摘要。髓母细胞瘤 (MB) 是最常见的儿童恶性后颅窝肿瘤。最近的遗传、表观遗传和转录组分析将 MB 分为三个亚组,即无翅型 (WNT)、Sonic Hedgehog (SHH) 和非 WNT/非 SHH(最初称为第 3 组和第 4 组),具有不同的患者特征和预后。WNT 是最不常见但预后最好的亚组,其特征是核 β-catenin 表达、Catenin beta-1 (CTNNB1) 突变和 6 号染色体单体性。SHH 肿瘤含有 GLI1、GLI2、SUFU 和 PTCH1 基因的突变和改变,这些基因组成性激活 SHH 通路。最初,TP53 基因改变和/或 MYC 扩增的存在被认为是最可靠的预后因素。然而,最近的分子分析将 SHH MB 细分为几种亚型,这些亚型具有不同的特征,例如年龄、TP53 突变、MYC 扩增、转移的存在、TERT 启动子改变、PTEN 丢失和其他染色体改变以及 SHH 通路相关基因突变。第三个非 WNT/非 SHH MB(组 3/4)亚组在遗传上高度异质性,并显示出几种分子模式,包括 MYC 和 OTX2 扩增、GFI1B 激活、KBTBD4 突变、GFI1 重排、PRDM6 增强子劫持、KDM6A 突变、LCA 组织学、10 号染色体丢失、17q 等染色体、SNCAIP 重复和 CDK6 扩增。然而,基于
