本文在接受后立即进行了同行审查和发表。这是一篇开放式访问文章,这意味着可以自由下载,打印和分发,
纳米材料具有独特的性质,例如高表面积、增强的反应性以及可调的物理和化学特性,并且在重金属检测方面显示出巨大的潜力。特定功能化的量子点可与特定分析物结合。特定的结合能力会引起电子特性的变化,从而引起传感器基质的化学电阻响应。从这个角度来看,开发了一种与汞离子结合的传感器基质。然后将该传感器基质印刷在条带上,以便能够测量条带暴露于分析物(甲基汞)时电阻率的变化。可以使用掌上设备测量电阻率的变化,该设备显示水样中的汞污染水平。在掺有甲基汞的真实水样以及鱼血样本中测试了污染水平。
与第一个提议有关的风险这是我们公司的第一个公开发行,我们公司的股票份额没有正式市场。我们的股权股票面值分别为期,地板价格和上限价格分别为股票股票面值的时间[●]时间和[●]时间。根据SEBI ICDR法规,我们公司与BRLMS协商确定和合理的底层价格,上限价格和要约价格,并根据第133页的“要约价格基础”中的规定,不应将其视为公平股份股份股票后的股票市场价格。对于股票股票中的积极和/或持续交易或上市后的股票交易价格,无法给出任何保证。
klystron管:两个空腔klystrons - 结构,速度调制过程和Applegate图,束束工艺 - o/p功率和效率的表达式。反射klystrons - 结构,Applegate图和工作原理,束数学理论,功率输出,效率,O/P特征。
联合战争研究中心 (CENJOWS) 与印度军事评论 (IMR) 于 2023 年 12 月 8 日合作举办了一场关于“军事电力系统”的会议。此次活动在新德里的 Manekshaw 中心举行。会议的杰出小组成员包括三军的高级服役人员、国防研究与发展组织 (DRDO) 的代表和行业代表。研讨会为业界提供了一个与武装部队互动的环境,以了解他们的电力系统要求并获取有关其标准的信息,以便他们在蓬勃发展的同时模仿他们的专业知识。会议还向听众介绍了业界和国防研究与发展组织 (DRDO) 以及各军种下的设计局在电力系统领域取得的技术进步以及他们所解决的局限性。研讨会分为四个环节进行。
随着栅极信号的施加,栅极电流开始从栅极流向阴极。栅极电流在阴极表面的电流密度分布不均匀。栅极附近的电流密度分布要高得多。随着与栅极距离的增加,密度会降低。因此,阳极电流在栅极附近的狭窄区域中流动,栅极电流密度最高。从上升时间开始,阳极电流开始自行扩散。阳极电流以 0.1 毫米/秒的速率扩散。扩散阳极电流需要一些时间,如果上升时间不够,则阳极电流无法扩散到整个阴极区域。现在施加了较大的阳极电流,并且也有较大的阳极电流流过 SCR。因此,开启损耗很高。由于这些损耗发生在一小块导电区域,因此可能形成局部热点,并可能损坏设备。
在大多数微波管中,信号被放置在空腔间隙中,并且当电子面对最大对立时,电子被迫在时间上跨越间隙。在反对下跨越间隙会导致能量转移到空腔间隙信号中。当间隙电压是正弦的时间变化时,电荷紧身固定是连续且均匀的,通常是这种情况时,在腔体和越过间隙的电荷之间没有能量的净传递。这是因为在半周期中,当能量传递与上一半循环时,在半周期中相反,导致循环中无净能量转移。要具有从电子束到间隙信号电压的净能量传递,最大值的最大值将压缩的电荷被压缩到薄板或束中,因此它需要更少的时间来跨越间隙,并且安排了束束的束缚,以使峰值间隙电压处于峰值间隙电压,从而使束最大的反对面和降低信号从信号信号到信号上。
摘要: - 在数字图像处理中,中位过滤器用于减少图像中的噪声。中间过滤器考虑了图像中的每个像素,并用邻域像素的中位数代替嘈杂的像素。中值是通过对像素进行排序计算的。排序依次由比较器组成,该比较器包括加法器和乘数。乘法是算术计算系统中的基本操作,用于许多DSP应用程序(例如FIR滤波器)。加法电路用作乘数电路中的主要组件。随身携带阵列(CSA)乘数是通过基于多重逻辑的建议的加法单元格设计的。提出的加法电路是通过使用香农定理设计的。将乘数电路进行了示意图,并使用VLSI CAD工具生成它们的布局。模拟了所提出的基于加法器的乘数电路,并将结果与CPL和其他基于Shannon的加法器细胞设计的电路进行了比较。通过使用90nm特征大小和各种电源电压来模拟所提出的基于加法器的乘数电路。Shannon Full Adder Cource的乘数电路比其他已发表的结果在功率耗散和面积方面提供了更好的性能,这是由于Shannon Adder电路中使用的晶体管数量较少。