关键词:后入式航天服、HUT、PLSS、Aouda.X、穿戴、原型开发 由奥地利空间论坛(OWF)开发的 Aouda.X 航天服模拟器目前由一个重 48 公斤的系统组成,其中近 57% 由航天服的 HUT(硬上身)、PLSS(便携式生命支持系统)和 OBDH(机载数据处理)组成。除此之外,当前配置需要 3 小时的辅助穿戴/脱下。为了改善设计的人体工程学,必须开发一种相对较轻且具有高效穿戴能力(最好是自行穿戴)的 HUT/PLSS 设计原型。可以通过提出后入口设计来解决此问题,当在 Aouda.X 上实施时,可以潜在地缓解这些障碍。本研究旨在根据行星服性能指标和操作要求,为 Aouda.X 的当前配置确定合适的后入口封闭设计。Aouda.X 后入口设计还旨在与北达科他大学载人航天实验室开发的 NDX-Suitport 兼容。论文工作包括开发一种合适的方法来区分宇航服模拟器的 HUT 和 PLSS 的后入口设计,并根据这些要求识别自密封/锁定机制。作为本研究的结果,设计了 HUT 和 PLSS 的全尺寸 CAD 模型,该模型具有与宇航服和宇航服端口兼容的最佳尺寸。进行静态载荷分析以验证结构的可行性并对材料选择提出合适的建议。概述了进一步改进后入式防护服开发的方法。
Rabin 于 1981 年率先提出了无意识传输的概念 [1]。在 Rabin 的 OT (也称为全有或全无 OT) 协议中,Alice 向 Bob 发送消息 m,Bob 以 1/2 的概率接收到消息 m。在协议交互的最后,Alice 不知道 Bob 是否收到了消息 m,但 Bob 收到了。后来在 1985 年,Even 等人 [2] 提出了一种更实用的 OT,称为 1-out-of-2 无意识传输,它可以用于实现各种各样的协议 [2,3]。在此版本的 OT 中,Alice 有一对消息对 (m0, m1),Bob 做出选择,其中一条消息被选中。在协议的最后,Bob 可以从 Alice 的消息对中检索与他的选择相对应的一条消息,而对另一条消息一无所知,而 Alice 也不知道 Bob 的选择。然而,Crépeau 证明,当消息为单个比特时,两种无意识传输协议是相似的,这意味着一个协议可以由另一个协议创建,反之亦然 [4]。此外,可以构建一个 1-out-of-2 无意识传输协议,该协议从单个比特的 1-out-of-2 无意识传输协议传输位串消息 [5-7]。这些协议设置的多功能性促使人们更广泛地研究安全双方计算的能力。经典 OT 依赖于计算难度假设。通常,这些假设分为两类:一般难度假设,例如单向函数 (OWF) 的存在,以及特定难度假设
1 简介................. ... . ... ................. ... . . . . . . . . . 16 3.4 安全定义 . . . . . . . . . . . . . . . . . . . 17 4 附加构建模块 . . . . . . . . . . . . . . . . . . . . 17 4.1 AES 和 Rijndael . . . . . . . . ................. ... . ... ................. ... 33 6.3 推导加密例程的约束 . ... ................. ... . ... .................... ... . ... 60 10.2 具体攻击 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ... 87 有限场发生器元件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
在经典的加密术中,单向函数(OWF)被广泛认为是“最小假设”,但量子加密的情况就不太清楚。最近的作品提出了两个并发候选量子密码学中最小假设的候选者:单向状态发生器(OWSGS),假定具有有效的验证算法的硬搜索问题的存在,并且EFI对,并假定存在困难的区分问题。最近的两篇论文[Khurana和Tomer Stoc'24; Batra和Jain focs'24]表明OWSG表示EFI对,但反向方向保持开放。在这项工作中,我们提供了有力的证据,表明相反的方向不存在:我们表明存在量子统一的甲骨文,而efi对存在,但OWSG不存在。实际上,我们显示了一个稍强的陈述,该语句也适用于输出经典位(QEFID对)的EFI对。因此,我们通过Oracle,QEFID对和单向拼图与OWSG和其他几个MicroCrypt原始词分开,包括有效可验证的单向拼图和不可消除的状态生成器。特别是解决了[Chung,Goldin和Gray Crypto'24]中留下的问题。使用类似的技术,我们还建立了一个完全黑框的分离(比私钥量子货币方案和QEFID对之间的较弱的分离(比Oracle分离略弱)。我们工作的一种概念含义是,有效的验证算法的存在可能会导致量子密码学中质性更强的原始素。
量子计算优势是指容易用于量子计算的计算任务的存在,但对于经典的计算很难。无条件显示量子优势超出了我们当前对复杂性理论的理解,因此需要一些计算假设。哪种复杂性假设是必要的,并且足以满足量子优势?在本文中,我们证明存在量子性(iv-poq)时,并且仅当存在经典的单向拼图(Owpuzzs)时,就存在量子性的量化证明(IV-POQ)。据我们所知,这是第一次获得量子优势的完全加密表征。iv-poq是量子性证明(POQ)的概括,其中verifier在交互期间有效,但随后可能会使用无限的时间。IV-POQ捕获先前研究的各种类型的量子优势,例如基于采样的量子优势和基于搜索的量子优势。 先前的工作[Morimae和Yamakawa,Crypto 2024]表明,可以从OWFS构建IV-POQ,但是从较弱的假设中构建IV-POQ的结构是敞开的。 我们的结果解决了开放问题,因为据信owpuzzs比OWF弱。 owpuzzs是许多量子加密原语所暗示的最基本的量子加密原语之一,而不是单向函数(OWFS),例如伪和单位单位(PRUS),pseudorandom andom state state nate state Intate Generators(PRSGS)和单向状态生成器(单向状态生成器(OWN)。 因此,IV-POQ与经典的Owpuzzs之间的等效性强调,如果没有量子优势,那么这些基本的加密原始原始物将不存在。IV-POQ捕获先前研究的各种类型的量子优势,例如基于采样的量子优势和基于搜索的量子优势。先前的工作[Morimae和Yamakawa,Crypto 2024]表明,可以从OWFS构建IV-POQ,但是从较弱的假设中构建IV-POQ的结构是敞开的。我们的结果解决了开放问题,因为据信owpuzzs比OWF弱。owpuzzs是许多量子加密原语所暗示的最基本的量子加密原语之一,而不是单向函数(OWFS),例如伪和单位单位(PRUS),pseudorandom andom state state nate state Intate Generators(PRSGS)和单向状态生成器(单向状态生成器(OWN)。因此,IV-POQ与经典的Owpuzzs之间的等效性强调,如果没有量子优势,那么这些基本的加密原始原始物将不存在。等效性还意味着量子助理是Owpuzzs应用程序的一个示例。承诺以外,以前没有知道Owpuzzs的应用。我们的结果表明,量子优势是Owpuzzs的另一种应用,它解决了[Chung,Goldin和Gray,Crypto 2024]的开放问题。此外,它是Owpuzzs的第一个量子计算 - 经典交流(QCCC)。为了显示主要结果,我们介绍了几个新概念,并显示了一些将引起独立感兴趣的结果。尤其是我们引入了一个交互式(和平均值)版本的采样问题,其中该任务是通过两个量子脉络化的tompolynomial-timealgorithm之间的经典相互作用来采样转录本。我们表明,QuantumAdvantional的交互式抽样问题等同于IV-POQ的存在,IV-POQ被认为是Aaronson结果的交互式(和平均值)版本[Aaronson,TCS,TCS 2014],SAMPBQP = SAMPBQP = SAMPBPP。最后,我们还引入了零知识的IV-POQ,并为其存在的研究足够和必要的条件。
在过去的十年中,在全球范围内,针对鸟类和蝙蝠碰撞风险的自动监测技术的创新和应用方面的巨大发展是响应于海上风电场(OWFS)的构建。这一开发项目背后的主要驱动力是全球监管机构提出的要求的上升。此外,开发是由于需要解决与人类观察员在船只,飞机或离岸结构上部署相关的实际和安全问题的动机。尽管已开发并应用了鸟类监测技术的评估标准,例如美国可再生能源野生动物研究所(REWI)2在美国,但通常缺乏鸟类和蝙蝠监测设备的认证。因此,从其技术利益和缺点来判断的可用技术质量非常需要独立评估。与OWF的监管机构的要求和技术准备水平(TRL)有关的情况并不是最不重要的情况。事实是,很少开发用于检测飞鸟和蝙蝠的监测技术。大多数可用的技术只是通常在岸上应用的技术的近海改编,而无需考虑海上环境中的特定操作和技术挑战。因此,许多创新仅达到了TRL 6或7,只有少数监视技术在TRL 8和9中。因此,该指南可以看作是根据供应商3的发布材料将信息添加到技术评论中的信息。因此,本指南试图填补根据鸟类和蝙蝠检测,安装解决方案,操作监测,改造潜力和成本的仔细评估监测技术现状的差距。此外,需要评估监测技术与监管机构和其他利益相关者群体的区域要求有关的遵守情况。尽管整个地区的监视要求似乎相似,但监管机构的重点取决于国家保护的重点和立法,例如严格保护的物种被欧盟鸟类和栖息地指令覆盖4和濒危物种涵盖的物种在美国5。此外,由于对敏感/保护物种的强调或飞行鸟类和蝙蝠的密度的强调差异,监测要求可能会有所不同。
h˚astad,Impagliazzo,Levin和Luby [Hill99]提出了从古典OWF的古典PRG结构。[Hill99]中的想法是第一个附加HH P X Q(其中H,H P X Q是种子和基于2-宇宙Hash函数提取器的种子,输出的输出)才能增加f P X Q,以增加有关x Q x Q x q q hh p x q的信息的数量。此(一种)使XñfP x q hh p x q一个注入函数。在附加HH P X Q时,需要确保所得函数保持单程。为此,可以接受| H P X Q |大约是s 2 p x | F P X QQ确保HH P X Q几乎与F P X Q无关。此处sαp - 代表α -r´enyi熵(请参见定义5)。在[Hill99]中,| H P X Q |取决于F P X Q的预图数,因此需要在结果F P X Q上进行条件。 然后,他们将硬核函数g P x q附加到f p x q hh p x q。 这样做,从f p p p x q q x q hh p x q x q b u |保持计算的不可区分性。 G P X Q | 。 由于F P X Q HH P X Q携带有关X(注射率)的大多数信息,因此他们认为F P X Q HH P X Q G P X Q X Q&F P X Q&F P X Q HH P X Q B U | G P X Q |在统计上相距很远,因此产生了EFI对。在[Hill99]中,| H P X Q |取决于F P X Q的预图数,因此需要在结果F P X Q上进行条件。然后,他们将硬核函数g P x q附加到f p x q hh p x q。这样做,从f p p p x q q x q hh p x q x q b u |保持计算的不可区分性。 G P X Q | 。由于F P X Q HH P X Q携带有关X(注射率)的大多数信息,因此他们认为F P X Q HH P X Q G P X Q X Q&F P X Q&F P X Q HH P X Q B U | G P X Q |在统计上相距很远,因此产生了EFI对。