在经典的加密术中,单向函数(OWF)被广泛认为是“最小假设”,但量子加密的情况就不太清楚。最近的作品提出了两个并发候选量子密码学中最小假设的候选者:单向状态发生器(OWSGS),假定具有有效的验证算法的硬搜索问题的存在,并且EFI对,并假定存在困难的区分问题。最近的两篇论文[Khurana和Tomer Stoc'24; Batra和Jain focs'24]表明OWSG表示EFI对,但反向方向保持开放。在这项工作中,我们提供了有力的证据,表明相反的方向不存在:我们表明存在量子统一的甲骨文,而efi对存在,但OWSG不存在。实际上,我们显示了一个稍强的陈述,该语句也适用于输出经典位(QEFID对)的EFI对。因此,我们通过Oracle,QEFID对和单向拼图与OWSG和其他几个MicroCrypt原始词分开,包括有效可验证的单向拼图和不可消除的状态生成器。特别是解决了[Chung,Goldin和Gray Crypto'24]中留下的问题。使用类似的技术,我们还建立了一个完全黑框的分离(比私钥量子货币方案和QEFID对之间的较弱的分离(比Oracle分离略弱)。我们工作的一种概念含义是,有效的验证算法的存在可能会导致量子密码学中质性更强的原始素。
在过去的十年中,在全球范围内,针对鸟类和蝙蝠碰撞风险的自动监测技术的创新和应用方面的巨大发展是响应于海上风电场(OWFS)的构建。这一开发项目背后的主要驱动力是全球监管机构提出的要求的上升。此外,开发是由于需要解决与人类观察员在船只,飞机或离岸结构上部署相关的实际和安全问题的动机。尽管已开发并应用了鸟类监测技术的评估标准,例如美国可再生能源野生动物研究所(REWI)2在美国,但通常缺乏鸟类和蝙蝠监测设备的认证。因此,从其技术利益和缺点来判断的可用技术质量非常需要独立评估。与OWF的监管机构的要求和技术准备水平(TRL)有关的情况并不是最不重要的情况。事实是,很少开发用于检测飞鸟和蝙蝠的监测技术。大多数可用的技术只是通常在岸上应用的技术的近海改编,而无需考虑海上环境中的特定操作和技术挑战。因此,许多创新仅达到了TRL 6或7,只有少数监视技术在TRL 8和9中。因此,该指南可以看作是根据供应商3的发布材料将信息添加到技术评论中的信息。因此,本指南试图填补根据鸟类和蝙蝠检测,安装解决方案,操作监测,改造潜力和成本的仔细评估监测技术现状的差距。此外,需要评估监测技术与监管机构和其他利益相关者群体的区域要求有关的遵守情况。尽管整个地区的监视要求似乎相似,但监管机构的重点取决于国家保护的重点和立法,例如严格保护的物种被欧盟鸟类和栖息地指令覆盖4和濒危物种涵盖的物种在美国5。此外,由于对敏感/保护物种的强调或飞行鸟类和蝙蝠的密度的强调差异,监测要求可能会有所不同。