摘要:该研究的目的是评估以雾的形式在历史A-BSM对象的纺织品表面上以雾形式应用的杀菌效率和80%和90%的乙醇的作用。从A-BSM中的纺织品表面分离出来用于测试的微生物,即cladosporium cladosporium cladosporium cladosporioides,niger和chrysogenum。枯草芽孢杆菌,金黄色葡萄球菌,曲霉菌和尼日尔曲霉也从美国型培养物中(ATCC)中使用。织物样品以10 5 –10 6 CFU/mL的浓度接种微生物。以雾形式以80%和90%的浓度应用。 用于此目的的喷枪VL 0819和VE 0707使用,其压力为0.2 MPa,使用直径为1.05 mm的PA头VLH-5喷嘴。 为了在施用乙醇雾后获得更有效的消毒,在21°C±1℃的条件下将样品存储在PE箔中22±1 h。应用乙醇雾后,使用扫描电子显微镜(SEM)评估了材料的性质的变化。 以薄雾的形式减少了现代棉质织物上的微生物数量,其浓度为80%和90%,从93.27%到99.91%的真菌,从94.96%到100%到100%到100%,除了B. tilliss B. tilliss的74.24%以外。 在历史织物上,在施用90%乙醇的时间缩短为4 s之后,微生物减少了99.93%以上,金黄色葡萄球菌被完全消除。以雾形式以80%和90%的浓度应用。用于此目的的喷枪VL 0819和VE 0707使用,其压力为0.2 MPa,使用直径为1.05 mm的PA头VLH-5喷嘴。为了在施用乙醇雾后获得更有效的消毒,在21°C±1℃的条件下将样品存储在PE箔中22±1 h。应用乙醇雾后,使用扫描电子显微镜(SEM)评估了材料的性质的变化。以薄雾的形式减少了现代棉质织物上的微生物数量,其浓度为80%和90%,从93.27%到99.91%的真菌,从94.96%到100%到100%到100%,除了B. tilliss B. tilliss的74.24%以外。在历史织物上,在施用90%乙醇的时间缩短为4 s之后,微生物减少了99.93%以上,金黄色葡萄球菌被完全消除。应用了测试的消毒技术后,在模型和历史棉花表面没有观察到纤维形态的变化。
有什么问题?云计算服务,软件和其他实施数字双胞胎的产品具有潜在的法律,道德和技术问题。根据专家的说法,对数据所有权和隐私的道德问题可能会导致公众信任较低。例如,如果一家制药公司未经同意出售了与数字双胞胎的健康相关数据,则可能会发生这种情况。当数字双胞胎用于决策时,数据质量或准确性等技术问题也可能会降低公众信心。例如,如果用于训练机器学习的数据不能准确反映患者人群的特征,则数字双胞胎的预测分析可能具有误导性甚至歧视性。
地球轨道上的空间物体总数估计超过 20 万个,而目前不断跟踪和编目的空间物体数量约为 2 万个。在我们这个时代,太空交通量每年都在增加,因此可能发生碰撞的风险也随之增加,全球都需要控制近地空间环境,特别是低地球轨道。这是每个北约国家的共同问题,可以通过各国之间的全球合作来解决。此外,与轨道物体测量位置相关的不确定性是影响性能、准确性和及时性的主要因素之一。因此,旨在协调大量传感器是该领域最重要的方面之一。本文提出了一种算法来估计全球分布的光学资产网络(望远镜和探测器)的性能,该网络使用现成的望远镜组件,部署在不同位置的多个站点。在探测尺寸小至 3 厘米的太空物体的情况下,定量性能指标计算为网络在给定时间窗口内可见的总分类碎片比例(在我们的例子中,已考虑 24 小时)。所提出的算法将所有 NORAD 目录、DISCOS 目录提供的所有物体物理数据以及所有光学和大气数据作为输入。然后,它会传播空间物体群,以获得它们在选定时间窗口内的位置,过滤掉所有不在地面站网络视线范围内足够时间的物体,以保证可行的轨道确定,并对满足所有先前条件的物体估计光学资产可实现的信噪比。这些值直接转化为检测概率,从而为给定的地面传感器网络配置提供性能指数,可用作评估不同架构时要优化的目标函数。
规划专业和规划理论被比作“喜鹊”(Sandercock,2000;Barry et al,2018)。这个比喻意味着规划作为一个领域和一套理论的多样性、包容性和多学科性,它必须响应全球社区和地区的复杂需求。同样,规划理论的学生可以被比作喜鹊,收集规划理论的闪亮物体(从他们自己的角度来看是闪亮的),并将它们建成他们自己的研究和自我发展的巢穴。事实上,以规划理论形式呈现的闪亮物体一直在不断变化。在高级规划理论研讨会上,一群新兴学者着手探索这种喜鹊性质。这张海报提供了一组图形表示,展示了博士生和硕士生的个人智力旅程、富有成果的紧张关系、研究工作、实践和生活中的贡献和局限性。学生和导师开始探索规划理论的边界、边缘、谱系、经典、想象、主要符号、参与者、网络和集合。新兴规划学者的观察能告诉我们关于规划理论领域的什么信息?
地理空间信息已证明其至关重要,因为它可以提供早期预警信号和提供作战见解。在本文中,我们将介绍另一个应用领域,即收集地理空间信息以用于综合训练和模拟解决方案。政府(即情报界)和商业地理空间数据提供商(例如 Maxar Technologies)为选定的关注区域提供了大量接近实时的数据。例如,如果需要,Maxar 的卫星群每天可以提供多个重访周期。生成的大量地理空间数据是现代大数据分析的典型应用领域,而现代大数据分析则由先进的机器学习模型支持。考虑到这些技术进步,我们将提供一个端到端的地理空间平台来消化和分析捕获的数据(例如通过无人机或卫星)并输出 3D 环境,从而为关键任务规划和培训提供下一代建模和仿真 (M&S) 解决方案。
如今,空间碎片已成为卫星系统的主要威胁之一,尤其是在低地球轨道 (LEO) 上。据官方估计,有超过 700,000 个碎片物体有可能摧毁或损坏卫星。通常,无法从地面直接识别撞击的影响。但是,高分辨率雷达图像有助于检测这种可能的损坏。此外,还可以对未知的空间物体或卫星进行调查。因此,DLR 开发了一种名为 IoSiS(太空卫星成像)[2, 3] 的实验雷达系统,该系统基于现有的转向天线结构和名为 GigaRad [1] 的多用途高性能雷达系统,在传播方向上的分辨率优于 5 厘米。在横向或方位角方向上,通过使用逆合成孔径雷达 (ISAR) 技术,可以获得高空间和距离独立分辨率。该技术基于沿合成孔径从不同角度对物体进行相干观察,需要在轨道通过期间精确跟踪物体。因此,要在距离和方位角上获得相似的分辨率,就必须进行宽方位角观测。对于一个 ISAR 图像,5 厘米的预期空间分辨率意味着大约 25° 的观测角。如此高的空间分辨率不是遥感雷达应用的标准。目前的地球观测系统实现的分辨率在几分米的数量级,比现有系统差一个数量级。因此,这种改进需要相应更高的系统和轨道校正性能。特别是,对雷达电子设备、天线和馈电频率响应进行足够精确的校准至关重要。此外,还必须对观测物体进行精确的轨道测定。本文概述了 IoSiS 雷达系统的主要技术特点。讨论了主要的误差源和相应的解决方案。说明了最终生成几厘米分辨率的雷达图像的校准工作。
在史瓦西坐标系中,坍缩壳层的经典演化过程中,史瓦西相对流与固有时间的关系实际上迫使我们将黑洞的形成解释为一个高度非局部的量子过程,在这个过程中,壳层/反壳层对在初始视界内产生,从而恰好在视界处抵消原始坍缩壳层。通过研究黑洞背景中的量子场,我们发现了类似的非局部效应。除其他外,霍金对中即将离去的成员会很快与黑洞几何结构纠缠(而不是其伙伴),这与通常的假设相反,即根据视界附近的局部几何结构,霍金对最大程度地纠缠。此外,下落的波甚至在穿过视界之前就会影响黑洞几何结构。最后,我们发现粒子需要有限的时间才能穿过黑洞视界,从而避免在视界处发生的有限蓝移和红移。这些发现有力地支持了黑洞作为宏观量子物体的图景。
机场是至关重要的国家资源。它们在人员和货物运输以及区域、国家和国际贸易中发挥着关键作用。它们是国家航空系统与其他交通方式的交汇点,也是联邦管理和监管空中交通运营的责任与拥有和运营大多数机场的州和地方政府的作用相交叉的地方。研究对于解决常见的运营问题、采用其他行业的适当新技术以及将创新引入机场行业都是必要的。机场合作研究计划 (ACRP) 是机场行业开发创新短期解决方案以满足其需求的主要手段之一。2003 年,TRB 特别报告 272:机场研究需求:合作解决方案基于联邦航空管理局 (FAA) 赞助的一项研究,确定了对 ACRP 的需求。ACRP 对机场运营机构共同存在且现有联邦研究计划未充分解决的问题进行应用研究。它仿照成功的国家公路合作研究计划和交通合作研究计划。ACRP 开展机场各学科领域的研究和其他技术活动,包括设计、建设、维护、运营、安全、安保、政策、规划、人力资源和行政管理。
本文简要介绍了一种通过现场碎片测量估算在轨卫星碎片的一些轨道参数(具体而言,特定时间的角动量方向和角动量方向的时间变化)的新方法。与以前的研究一样,这种方法采用了一个约束方程,该方程源于检测到的碎片与现场碎片测量卫星共享地心位置矢量这一事实。然而,与以前的研究不同,这种方法并不采用可以应用于破碎物体升交点赤经变化率的约束方程。相反,这种方法根据探测时的最大或最小地心赤纬来确定破碎物体的倾角。然后,这种方法通过假设一个半径为探测时地心距离的圆形轨道来找出破碎物体升交点赤经变化率的候选者。最后,利用所采用的约束方程,该方法估算了解体时上升节点的赤经,并计算了上升节点赤经变化率的修正值。本文还验证了在理想条件下,即所有探测点都假设在解体物体和现场碎片测量卫星的两个轨道平面的交线上,该新方法的有效性。
我们的新数据集为我们提供了重叠的宽带红外颜色和相同颜色波段的高分辨率光谱。我们精心选择了目标,包括具有已知成分的混合物体,以便开发和评估新技术来解释我们的宽带近红外光度测定。由于所有之前发表的研究都集中在地球同步轨道上的物体上,因此 Molniya 有效载荷和 RB 的加入是对现有文献的独特补充。我们首次能够在相同类型的全分辨率近红外光谱的背景下分析近红外光度测定。我们提供了有关改进感兴趣的光谱带以进行表征的见解,并提供了一种使用效率更高的近红外光度测定技术来提高快速识别能力的方法。