基于 SRAM 的 FPGA 因其现场可编程性和低成本而在航空航天工业中广受欢迎。然而,它们会受到宇宙辐射引起的单粒子翻转 (SEU) 的影响。三重模块冗余 (TMR) 是一种众所周知的缓解 FPGA 中 SEU 的技术,通常与另一种称为配置清理的 SEU 缓解技术一起使用。传统的 TMR 一次只能提供针对单个故障的保护,而分区 TMR 则可以提供更高的可靠性和可用性。在本文中,我们提出了一种使用概率模型检查在早期设计阶段分析 TMR 分区的方法。所提出的正式模型可以捕获单个和多个单元翻转场景,而不受任何相等分区大小假设的影响。从设计的高级描述开始,使用指定数量的分区、组件特性库和用户定义的清理率从数据流图 (DFG) 构建马尔可夫模型。这种模型和详尽的分析可以捕获辐射环境中系统中可能发生的所有故障和维修。然后使用 PRISM 模型检查器自动验证各种可靠性和可用性属性,探索清理频率与满足设计要求所需的 TMR 分区数量之间的关系。此外,报告的结果表明,基于已知的投票者故障率,可以找到最佳数量的
如今,对安全有要求的应用程序已无处不在,可在各种边缘设备中找到。然而,这些设备中的微控制器尽管通过实现多核和缓存层次结构提供了中等性能,但可能无法提供足够的支持来实施最高完整性级别所需的某些安全措施,比如锁步执行,以避免所谓的共因故障(即影响冗余组件的故障导致所有冗余组件出现相同的错误)。为了解决这一限制,最近在 [ 2 ] 中提出了一种基于软件监视器的方法,该方法在内核之间强制执行某种基于软件的锁步执行,并提供了概念证明。本文介绍了 SafeSoftDR,这是一个库,它提供了一个标准接口,用于在非原生锁步内核上部署基于软件的锁步执行,从而减轻了最终用户创建冗余进程、复制输入/输出数据和执行结果比较的负担。我们的库已经在基于 x86 的 Linux 上进行了测试,目前正在集成到针对安全相关应用的开源 RISC-V 平台上,从而为安全关键型应用提供了便捷的环境。
可靠的单光子生成对于实施量子信息系统(例如量子加密和量子计算)非常重要[1]。半导体量子点是以single光子或光子对形式产生量子光的绝佳来源[2-13]。尤其是,已经表明,在通过适当的激光脉冲激发时,在激发态下准备量子点时,该点可以将单个光子发射到所需的输出模式中,例如腔或波导。由于每次激光脉冲后产生光子数状态,这一代人被称为“按需” [14]。按需单个光子源(SPSS)的关键数字是亮度,η(每个激光脉冲的平均光子数),二阶相干性,g(2)(0)(与单个光子纯度有关)(与单个光子纯度有关),以及 - 区分性,I(I(I(I),I(i(i(IM)量度,I(i(量度)已经开发了重大的研究工作,以提高SPS生成的效率,纯度和连贯性。艺术系统的状态已达到G(2)(0)= 0。012和i = 0的不可区分性。962 [9],尽管这些数字通常是在过滤后。不需要的光子对产生,从平面发射出发和驱动事件(例如通过声子吸收/发射[16,17])都是克服这些SPSS的持续改进的关键挑战。反馈,其中系统的输出用作稳定或控制机制,在各个平台上都很好地使用了[18-28]。这通常是通过基于测量的反馈来实现的,其中测量输出以告知对系统作用的外部控制[24 - 26,29 - 33]。但是,这种方法对于依赖于维持系统连贯性的量子信息系统是有问题的。相反,可以在系统级别中包含反馈并在系统本身上行动以避免测量:相干馈回。最近,显示波导量子电动力系统中的相干反馈可显着改变使用连续波泵的光子输出统计 -
摘要。脑转移瘤 (BM) 是最常见的脑肿瘤。使用立体定向放射外科治疗多发性 BM 患者需要准确定位转移瘤。神经网络可以协助完成这项通常由人类专家执行的耗时且昂贵的任务。检测小病变尤其具有挑战性,因为它们在现有方法中往往代表性不足。然而,病变检测对所有大小都同样重要。在这项工作中,我们开发了一组神经网络,专门用于检测和分割小 BM。为了完成这项任务,我们训练了几个神经网络,专注于 BM 分割问题的各个方面:我们使用 blob 损失来专门解决病变实例在大小和纹理方面的不平衡,因此不会偏向较大的病变。此外,使用 T1 和 T1 对比增强序列之间的减法序列的模型专注于低对比度病变。此外,我们只针对小病变训练额外的模型。我们的实验证明了额外的 blob 损失和减法序列的效用。然而,在集成中包含专门的小病变模型会使分割结果变差。我们还发现,受领域知识启发的后处理步骤可以在大多数实验中大大提高我们的性能。我们的方法使我们能够向 ASNR-MICCAI BraTS 脑转移挑战赛 2023 提交具有竞争力的挑战参赛作品。
在量子信息论中,由于信息处理过程遵循幺正演化和线性叠加原理,一些在经典信息过程中可以实现的操作在封闭的物理系统中是被禁止的,揭示这些现象的概念被称为“不可行”定理。例如,不存在可以复制任意未知纯量子态的通用克隆机,这被称为不可克隆定理[1,3,20]。不可克隆定理的一个相反版本指出,在封闭的物理系统中,不可能删除两个复制的任意未知量子态中的一个而不影响另一个,即不可删除定理[4]。随着量子信息理论的深入研究,越来越多的不可行定理被提出,如不可广播定理[5,6]、不可叠加理论[7-9]、不可隐藏理论[10]。这些定理从信息论的角度解释了量子力学与经典物理学之间的差异,也为量子秘密共享[11–13]、量子密钥分发[14,15]、量子隐形传态[16–18]等量子信息处理任务的安全性提供了根源。2018年,Kavan Modi等人提出了一种新的不可行定理——无掩蔽定理,该定理指出,不可能将原始任意未知量子态隐藏到二分量子系统之间的量子关联中,使边缘系统无法访问[19]。此外,这一结果不仅为量子比特承诺——量子量子比特承诺——提供了更广阔的视野[20,21],而且
量子模拟是量子计算的一个潜在强大应用,有望模拟传统计算方法无法实现的有趣量子系统。尽管有如此有前景的应用,并且活跃研究不断增加,但在研究生或本科生层面,关于该主题的入门文献或演示却很少。这人为地提高了进入该领域的门槛,该领域的学术和工业界的人才已经有限。这里我们介绍了如何模拟量子系统,从选定的汉密尔顿量开始,概述状态准备和演化,并讨论测量方法。我们提供了一个示例模拟,通过使用 Suzuki-Trotter 分解通过时间演化测量无序紧束缚模型的状态动态。此外,误差缓解和噪声降低对于在当前可用的嘈杂量子计算机上执行量子算法至关重要。我们讨论并演示了各种可显着提高性能的误差缓解和电路优化技术。所有源代码均可免费获取,我们鼓励读者在此基础上进行构建。
热点分析仪表板以前在我们2023年2月的新闻通讯中涵盖的仪表板确实有令人兴奋的更新。目的是通过迁移到数据可视化平台基础和物流分析数据环境(BLADE)来与空军数字转换策略集成。Now through a new project in collaboration with Office of the Secretary of Defense Corrosion Policy Oversight (OSD CPO) & Aging Aircraft Solutions occurring over the next year, AFCPCO will use Artificial Intelligence (AI) tools to clean up data found in the Reliability and Maintainability Information System (REMIS) to make maintenance data more accurate and recreate the dashboards around this new, corrected data set filtered down to corrosion focused records.一旦完成的仪表板将向拥有刀片帐户的任何人开放,并且特别感兴趣的是空中物流中心(ALCS),任务设计系列(MDS)和机翼腐蚀经理以及制造功能和现场水平维护者,以跟踪其顶级趋势武器系统零件,看到腐蚀差异。
服务地点(POS)代码将继续根据患者亲自看到患者的观察。从2024年1月1日开始,CMS已建议将以下POS代码用于远程医疗服务。如果根据索赔选择了远程医疗服务场所,则除了牙科远程医疗服务以外,所有索赔都需要远程医疗修饰符。Careoregon已经进行了系统编辑,如果没有远程医疗修饰符之一(93,95,FQ,G0,GQ,GT),则将拒绝服务02或10的服务。服务地点02远程医疗除了在患者的家庭描述符:通过电信技术提供或接收健康服务和健康服务的位置。通过电信技术接收健康服务或健康服务时,患者不在他们的家中。除了基于学校的健康服务(SBHS)以外,所有物理和行为远程医疗以及远程医疗以及口服远程医疗服务应包括服务代码02当客户或会员位于其房屋以外的其他地点时。当客户或成员位于其家中时,索赔应包括服务代码10。服务地点10在患者的家庭描述符中提供的10远程医疗:通过电信技术提供或接收健康服务和健康服务的地点。从2024年1月1日开始,Careoregon将遵循CMS,并以非道理PFS利率为其家中提供的远程医疗服务付费。患者在他们的家中(这是医院或其他设施以外的地方在私人住宅中获得护理的位置),当通过电信技术接收健康服务或与健康相关的服务时。
我们介绍了一种基于 Xilinx RFSoC 的量子位控制器(称为量子仪器控制套件,简称 QICK),它支持直接合成载波频率高达 6 GHz 的控制脉冲。QICK 可以控制多个量子位或其他量子设备。QICK 由一个数字板组成,该数字板承载着一个 RFSoC(射频片上系统)FPGA [1]、定制固件和软件以及一个可选的配套定制模拟前端板。我们表征了系统的模拟性能及其数字延迟,这对于量子纠错和反馈协议很重要。我们通过对 transmon 量子位执行标准表征来对控制器进行基准测试。我们实现了 F avg = 99.93% 的平均 Clifford 门保真度。所有原理图、固件和软件都是开源的 [2]。
描述代理奖励函数的可解释人工智能技术可以在各种环境中增强人机协作。人类对代理奖励函数的理解特别有益的一个环境是在价值一致环境中。在价值一致环境中,代理旨在通过交互推断人类的奖励函数,以便协助人类完成任务。如果人类能够理解代理在奖励理解方面存在差距,他们将能够更高效、更有效地进行教学,从而更快地提高人机团队的绩效。为了在价值一致环境和类似环境中支持人类合作者,首先需要了解不同奖励解释技术在各种领域的有效性。在本文中,我们介绍了奖励解释技术的信息模式分类,提出了一套用于人类奖励理解的评估技术,并介绍了领域复杂性的四个轴。然后,我们提出一项实验来研究涵盖一系列复杂程度各异的领域中的多种信息模式的广泛奖励解释技术的相对有效性。