1.1 NAME OF SOURCE ..................................................................................................................... 1-1 1.2 FACILITY CONTACTS AND ADDRESS ........................................................................................... 1-1 1.3 SOURCE OPERATIONS ................................................................................................................ 1-1
双极电离控制:等离子空气系统气味控制 – 等离子空气装置产生的离子将电子伏特电位低于 12 的气体分解为空气中普遍存在的无害化合物,例如氧气、氮气、水蒸气和二氧化碳。所得化合物取决于进入等离子场的污染物。在这种情况下,大麻产生的 VOC 或萜烯气味分解为二氧化碳和氮气以及水蒸气,从而消除气味。正离子和负离子通过其电荷被空气中的颗粒吸引。一旦离子附着在颗粒上,颗粒就会通过吸引附近极性相反的颗粒而变大,从而提高过滤效率。杀死病毒、细菌和霉菌与正离子和负离子围绕颗粒的方式类似,它们也被病原体吸引。当离子在病原体表面结合时,它们会夺走病原体生存所需的氢。
本文所述产品(以下简称“产品”)的销售须遵守 Huntsman Advanced Materials LLC 或其适当关联公司(包括但不限于 Huntsman Advanced Materials (Europe) BVBA、Huntsman Advanced Materials Americas Inc.、Huntsman Advanced Materials (Hong Kong) Ltd. 或 Huntsman Advanced Materials (Guangdong) Ltd.(以下简称“Huntsman”))的一般销售条款和条件。以下内容取代买方文件。尽管据亨斯迈所知,本出版物中的信息和建议在出版之日是准确的,但本出版物中包含的任何内容均不得解释为任何明示或暗示的陈述或保证,包括但不限于任何适销性或针对特定用途的适用性的保证、不侵犯任何知识产权的保证、或有关质量或与先前描述或样品的一致性的保证,并且买方承担因使用此类产品而导致的所有风险和责任,无论是单独使用还是与其他物质结合使用。本文所述的任何声明或建议均不得解释为任何产品是否适合买方或用户的特定用途,或是否诱使他人侵犯任何专利或其他知识产权。数据和结果基于受控条件和/或实验室工作。买方有责任确定此类信息和建议的适用性以及任何产品是否适合其特定用途,并确保其对产品的预期用途不侵犯任何知识产权。
本节应包括设施平面图,并指明气味排放活动和排放的位置。相关信息可能包括但不限于门、窗、通风系统和气味源的位置。如果设施已在其营业执照申请平面图中提供了具体气味排放活动和排放的位置,则可改为引用设施的业务文件编号和该申请中平面图所在的相关部分。
1。与粗,干燥的散装剂混合有助于提高孔隙度并减少传入材料中的水分。如果在一个现场接受的材料已经厌氧且有臭的,则需要与粗干燥的散装剂及时合并,C:N比约为30:1。干燥的散装剂将吸收任何多余的水分,降低浓度材料的浓度并增加孔隙率,从而可以立即氧气穿透。这也是进水和散装代理的良好预防习惯。2。转动围栏和桩对于重新分布水分,提供充气和保持温度非常重要。最佳旋转频率取决于最初混合了材料,C:n比,任何现有的厌氧条件和孔子的孔隙率。通常,在堆肥过程的活动阶段,必须更频繁地转动式摩托车,尤其是在水分含量太高的情况下。另一方面,过多的转弯可能会降低粒径,从而降低堆肥和气流。3。强制曝气系统通过某些堆肥设施利用,以增加转弯之间的氧气流量。基本上,这些系统将空气吹入围栏。4。尺寸尺寸均匀地促进了氧气扩散和自然空气对流。无论使用标准的绕组还是强制曝气绕组系统,这种做法都是有帮助的。
将生物原理整合到人工嗅觉系统中,导致了气味检测和分类的显着前进。受到自然嗅觉的复杂机制的启发,研究人员正在开发模仿生物嗅觉途径功能的复杂系统。这些系统利用高密度化学主义传感器阵列(HCSA)结合了先进的计算技术,例如FPGA加速的肾小球收敛CUITS(FGCC)和层次图形图形神经网络(HGNN)。这种生物启发的方法可以实现对挥发性有机化合物(VOC)(VOC)的实时自适应反应,从而提高了气味识别的准确性和效率。是多参数sigmoidal传感器激活(MPSA),它通过利用传感器ARS的多种响应来量化VOC。通过模仿生物系统中发现的神经相互作用,通过可编程突触横梁(LIPSC)实施了横向抑制作用。添加 - 时间自组织图(TSOM)促进气味模式的动态聚类,从而使人们对复杂的气味环境有细微的理解。这项研究的一个新方面在于气味填充物的Grassmannian歧管嵌入(GME),该杂物提供了一个数学框架,用于代表和分析气味的多维性质。再加上哈密顿蒙特卡洛优化的反馈(HMC-FB),该系统有效地补偿了传感器读数的漂移,从而确保了随着时间的推移一致的性能。通过弥合生物学灵感与技术创新之间的差距,这些人工嗅觉系统有望彻底改变从环境监测到食品安全和医疗保健的应用。
小鼠Luis Boero* 1,2,Hao Wu* 1,2,3,Joseph D. Zak 4,Paul Masset 5,Farhad Pashakhanloo 1,2,Siddharth Jayakumar 1,2美国剑桥,美国2号哈佛大学蜂窝生物学,美国剑桥大学,美国3化学与化学生物学系,哈佛大学,美国剑桥,美国4伊利诺伊州伊利诺伊大学生物科学系美国剑桥的哈佛大学工程和应用科学8肯普纳自然与人工智能研究所,哈佛大学,美国剑桥 *这些作者贡献了同样的贡献。†与Venkatesh N. Murthy(vnmurthy@fas.harvard.edu)的通信,自然界中的抽象气味线索由于动荡的运输而稀疏且高度波动。为了研究动物如何看待这些间歇性线索,我们制定了一项行为任务,在该任务中,头部约束小鼠根据几秒钟内随机提出的离散气味脉冲的总数做出了二进制决策。小鼠很容易学会这项任务,并且他们的性能被广泛使用的决策模型很好地描述。logistic在呼吸周期内针对气味脉冲时间的二进制选择的逻辑回归表明,小鼠对吸入期间刺激的感知重量更高,而不是呼气,这种相位依赖性与嗅觉感觉神经元中反应的幅度密切相关。前梨状皮层(APCX)神经元对气味脉冲的种群反应也通过呼吸阶段进行调节,尽管单个神经元表现出不同的相位依赖性水平。单个APCX神经元对气味脉冲反应,导致表示有感觉证据的特征,但没有其积累。我们的研究表明,小鼠可以在数十个呼吸中整合间歇性的气味信号,但是感觉输入的呼吸调节对信息获取施加了限制,即皮质电路无法克服改善行为。
亲爱的读者!在11月22日,现在是时候了:我们的研究所在Sci的漫长夜晚打开了大门。在第九次,我们想将每个人引入所有人之间迷人的化学传播世界。这一事件不仅是我们介绍有关植物,昆虫和微生物的研究的机会,而且是我们对支持我们以公共资金支持的社会的承诺的表达。研究不会在真空中进行。它与我们以积极的方式生活和呼吸的民主和世界开放的价值观紧密相关。在一个越来越多地以紧张局势为标志的世界中,需要寻找全球危机(例如全球变暖或物种灭绝)的共同答案,我们认为这是建造桥梁和促进对话的责任。
a 发育行为学和认知心理学小组,勃艮第弗朗什孔泰大学胃肠和营养科学中心,法国国家科学研究院,法国农业研究理事会,第戎,F-21000,法国 b 鲁汶大学神经科学研究所心理科学研究所,1348 Louvain-la-Neuve,比利时 c 洛林大学,法国国家科学研究院,CRAN,F-54000,南锡,法国 d 洛林大学,CHRU-Nancy,神经病学系,F-54000,南锡,法国 e 发展、个体、过程、残疾和教育实验室(DIPHE),发展、教育和脆弱心理学系(PsyDÉV),里昂大学(Lumière Lyon 2)心理学研究所,69676 Bron cedex,法国 * 通讯作者:Arnaud Leleu (arnaud.leleu@u-bourgogne.fr) 和 Jean-Yves Baudouin (j.baudouin@univ- lyon2.fr) 1 这些作者贡献相同 数据可用性声明
污水收集系统是一个复杂的基础设施,由重力管道、人孔、抽水站和压力管道组成,用于将污水从偏远地区输送到污水处理厂。硫化氢气体 (H2S) 是一种恶臭、有毒且具有腐蚀性的气体,通常在污水收集系统中限制污水中氧气交换的点产生,从而造成污水污染。通常,下水道系统在部分满负荷条件下运行,水线上方的潮湿表面是需氧细菌的家园,这些细菌会将 H2S 氧化为硫酸,从而影响管道材料。这会导致收集系统腐蚀,从而导致管道变弱,如果不加以处理,可能会坍塌。这些故障会给市政当局带来巨大的成本,并对社区产生不利影响。美国环保署估计,当管道因腐蚀或坍塌而造成损坏时,大型下水道修复的成本将达到 388 亿美元(美国环保署,1985 年)。因此,了解废水特性并不断构建支持消除臭味和腐蚀的技术至关重要。