注释:1关于获取问题纸,在回答问题之前,候选人必须检查并确保已提供正确的问题纸。如果问题纸是不正确的,则应将其带给监护人的通知。在这方面的投诉不应接受考试。
逐点集中是计算每个状态-动作对的置信区间的标准技术 [Azar 等人,2017 年;Liu 等人,2021 年;Xie 等人,2021b 年;Cui 和 Du,2022 年]。然而,由于 NE 可以是混合策略,因此对 MARL 的直接扩展会受到多智能体诅咒的影响。与逐点集中技术不同,策略集中直接估计每个策略,这允许更严格的置信区间,从而避免对联合动作空间的依赖。我们在第 1.2 节中给出了技术概述。此外,我们表明策略置信界限始终是一个凸函数,因此经验最佳响应策略始终可以是确定性策略,这对计算效率至关重要。
已显示出频率的方法,例如保守Q学习(CQL),对具有重置骨架的训练通才代理人有利。最近的视觉和自然语言处理研究表明,与具有强烈诱导性偏见(例如卷积神经网络和经常性神经网络)相比,基于变压器的模型比例更为有利。在本文中,我们研究了视觉变压器(VIT)的训练单游戏代理的CQL的骨干。在这项工作中,我们通过引入时空注意层来增强基于图像的RL的视觉变压器(VIT)。我们进一步研究了各种嵌入序列凝集方法对VIT性能的影响。总的来说,我们修改的VIT优于单场Atari设置中的标准VIT。
在许多慢性疾病管理和重症监护应用中推荐最佳治疗策略的数据驱动方法越来越兴趣。强化学习方法非常适合这个顺序的决策问题,但必须专门在回顾性病历数据集上进行培训和评估,因为直接在线探索是不安全且不可行的。尽管有这一要求,但绝大多数治疗优化研究都使用了偏离RL方法(例如,在纯粹的离线设置中表现较差的双重深Q网络(DDQN)或其变体)。离线RL的最新进展,例如保守Q学习(CQL),提供了合适的替代方案。,但是在将这些方法调整到现实世界应用中仍然存在挑战,在这些方法中,次优示例主导着回顾性数据集,并且需要满足严格的安全限制。在这项工作中,我们引入了一种实用且理论上的过渡抽样方法,以解决离线RL培训期间的行动失衡。我们对糖尿病和败血症治疗优化的两个现实世界任务进行了广泛的实验,以将所提出的方法的性能与突出的非上线和离线RL基准(DDQN和CQL)进行比较。在一系列有原则和临床相关的指标中,我们表明我们提出的方法可以根据相关的实践和安全指南进行实质性改善。
注意:1.我们强烈建议客户在购买我们的产品时仔细检查商标,如果有任何问题,请随时与我们联系。2.电路设计时请不要超过设备的绝对最大额定值。3.Winsemi Microelectronics Co., Ltd 保留对本规格书进行更改的权利,如有更改,恕不另行通知。