嵌段共聚物 (BCP) 是由通过共价键连接的化学性质不同的单体的子链或嵌段组成的聚合物,每个嵌段都是一系列相同单体的线性序列。大量一种类型的嵌段共聚物的集合称为熔体。在高温下,不可压缩熔体中的嵌段会均匀混合。随着温度降低,不同的嵌段会分离,并导致称为微相分离的过程。BCP 熔体的微相分离导致中观尺度多相有序结构的自组装,如片层、球体、圆柱体和螺旋体 [1, 5, 26]。微相分离可进一步由在下面表面形成的化学和/或拓扑图案化模板引导,从而实现复杂纳米结构的设计。该过程称为 BCP 的定向自组装 (DSA)。设计 BCP 的 DSA 以复制具有所需特征的纳米结构在纳米制造应用中非常有吸引力 [4, 31, 40, 45]。已证明,BCP 的 DSA 的计算研究在确定材料特性、薄膜厚度、聚合物-基底相互作用和几何限制对自组装过程的影响方面非常有价值 [23, 34, 48, 49]。BCP 熔体的微相分离连续模型 [37],如自洽场论 (SCFT) 模型、Ohta-Kawasaki (OK) 模型和 Swift-Hohenberg 模型,使得以相对较低的计算成本探索由 DSA 过程形成的纳米结构空间成为可能。它们通常用于与 BCP 的 DSA 相关的设计和逆问题 [ 21 , 27 – 29 , 32 , 36 , 43 ]。为了进一步降低计算成本,必须开发快速而强大的算法来获得模型解,特别是因为在解决设计和逆问题的过程中必须反复求解模型。在本文中,我们重点研究了二嵌段共聚物(具有两个