背景:由于工作量较高,建筑工人容易受到疲劳的影响。这项研究旨在调查建筑工人过度劳累与心率之间的关系,并提出一种预先锻炼的计划。方法:我们从2021年8月至10月10日在首尔的住宅和商业综合体的建筑工地进行了建筑工人的心脏速度,并开发了一个实时监视劳累过度工作的指数。穿着实时心率监测设备,共有66名韩国工人参加了这项研究。使用最小和最大心率计算相对心率(RHR),并使用RHR估算最大可接受的工作时间(MAWT)来计算工作量。过度劳累指数(OI)定义为用MAWT评估的累积工作量。将适当的方案线(PSL)设置为一个索引,可以与OI进行比较,以实时评估过度劳动的程度。使用OI和PSL之间的差异,在工作性能期间实时评估了多余的劳累指数(EOI)。EOI值用于执行接收器操作特征(ROC)曲线分析,以找到用于分类状态分类的最佳截止值。结果:在分析的60名参与者中,有28名(46.7%)根据其RHR分类为劳累组。ROC曲线分析表明,EOI是过度劳累的良好预测指标,曲线下方的面积为0.824。最佳截止值范围为21.8%至24.0%,具体取决于确定截止点的方法。结论:EOI显示出令人鼓舞的结果,作为一种预测工具,可以使用MAWT进行心率监测和计算,以评估过度劳动。需要进一步的研究来准确评估身体工作量并确定各行业的截止值。
威斯菲尔德的联合国周纪念活动将于星期六上午 10 点在广场升起美国和联合国旗帜并举行新旗杆落成典礼。如无意外,仪式将于星期日下午 1 点举行。威斯菲尔德扶轮社和狮子会是具有国际关系的服务组织,它们通过捐赠为竖立永久钢旗杆提供了资金,并承担了大部分费用。旗帜将一直飘扬到 10 月 28 日(女童子军星期日),男女童子军成员每天都会升起和降下旗帜。联合国庆祝活动的亮点是 10 月 29 日星期一晚上 8 点在罗斯福初级中学礼堂举行的全镇会议。联合国人类八人事务司社会事务官员 Ben Carruthers 博士将发表题为“人类八人宪章——它永远可以实现吗?”的演讲,演讲之前将播放联合国流动电影部门的一部影片,该部门由 Lester Kreielsheimer 女士担任主席。“ffiitfield 成人学校已合作将此次演讲向公众开放。
抽象目标的代谢变化至关重要地参与破骨细胞的发育,并可能导致类风湿关节炎(RA)的骨骼降解。已知酶辅酶脱羧酶1(ACOD1)将单核细胞衍生的巨噬细胞的细胞功能与其代谢状态联系起来。作为源自单核细胞谱系的破骨细胞,我们假设ACOD1及其代谢产物在破骨细胞分化和关节炎相关的骨质流失中的作用。方法是在人类外周血单核细胞(PBMC)中测量了RA和健康对照患者的质谱法。在体外用Itaconate衍生物4-辛基 - 乙酸盐(4-OI)处理人和鼠骨细胞。使用K/BXN血清诱导的关节炎和人TNF转基因(HTNFTG)小鼠,我们检查了ACOD1缺乏和4-OI治疗对小鼠骨侵蚀的影响。场景和细胞外通量分析用于评估破骨细胞和破骨细胞祖细胞的代谢活性。ACOD1依赖性和依赖性蛋白酶依赖性变化。CRISPR/CAS9基因编辑用于研究低氧诱导因子(HIF)-1α在ACOD1介导的破骨细胞发育调节中的作用。RA患者的PBMC中的Itaconate水平与疾病活性成反比。ACOD1-缺陷小鼠在实验性关节炎中表现出增加的破骨细胞数量和骨侵蚀,而4-OI治疗减轻了体内炎症性骨质损失,并抑制了体外人和鼠类骨细胞分化。从机械上讲,ACOD1通过抑制琥珀酸酯脱氢酶的活性氧和HIF1α介导的有氧糖糖溶解的诱导来抑制破骨细胞分化。结论ACOD1和ITACONATE是炎性关节炎中破骨细胞分化和骨质流失的关键调节剂。
人类大脑类器官,又称大脑类器官或早期的“迷你大脑”,是重现人类大脑发育各个方面的 3D 细胞模型。它们在促进我们对神经发育和神经系统疾病的理解方面显示出巨大的希望。然而,前所未有的体外模拟人类大脑发育和功能的能力也带来了复杂的伦理、法律和社会挑战。类器官智能 (OI) 描述了将此类类器官与人工智能相结合以建立基本记忆和学习形式的持续运动。本文讨论了有关大脑类器官和 OI 的科学地位和前景、意识的概念化和心脑关系、伦理和法律层面的关键问题,包括道德地位、人与动物嵌合体、知情同意和治理问题,例如监督和监管。需要一个平衡的框架来允许重要的研究,同时解决公众的看法和道德问题。科学家、伦理学家、政策制定者和公众之间的跨学科视角和积极参与可以为类器官技术提供负责任的转化途径。可能需要一个深思熟虑、积极主动的治理框架来确保这一有前途的领域在道德上负责任的进展。
人类大脑类器官,又称大脑类器官或早期的“微型大脑”,是重现人类大脑发育各个方面的 3D 细胞模型。它们在促进我们对神经发育和神经系统疾病的理解方面显示出巨大的潜力。然而,前所未有的体外模拟人类大脑发育和功能的能力也带来了复杂的伦理、法律和社会挑战。类器官智能 (OI) 描述了将此类类器官与人工智能相结合以建立基本记忆和学习形式的持续运动。本文讨论了有关大脑类器官和 OI 的科学地位和前景、意识的概念化和心脑关系、伦理和法律层面的关键问题,包括道德地位、人与动物嵌合体、知情同意以及监管等治理问题。需要一个平衡的框架来允许重要的研究,同时解决公众的看法和道德问题。科学家、伦理学家、政策制定者和公众之间的跨学科观点和积极参与可以为类器官技术提供负责任的转化途径。可能需要一个深思熟虑、积极主动的治理框架来确保这一有前景的领域取得合乎道德的负责任的进展。
抽象目标的代谢变化至关重要地参与破骨细胞的发育,并可能导致类风湿关节炎(RA)的骨骼降解。已知酶辅酶脱羧酶1(ACOD1)将单核细胞衍生的巨噬细胞的细胞功能与其代谢状态联系起来。作为源自单核细胞谱系的破骨细胞,我们假设ACOD1及其代谢产物在破骨细胞分化和关节炎相关的骨质流失中的作用。方法是在人类外周血单核细胞(PBMC)中测量了RA和健康对照患者的质谱法。在体外用Itaconate衍生物4-辛基 - 乙酸盐(4-OI)处理人和鼠骨细胞。使用K/BXN血清诱导的关节炎和人TNF转基因(HTNFTG)小鼠,我们检查了ACOD1缺乏和4-OI治疗对小鼠骨侵蚀的影响。场景和细胞外通量分析用于评估破骨细胞和破骨细胞祖细胞的代谢活性。ACOD1依赖性和依赖性蛋白酶依赖性变化。CRISPR/CAS9基因编辑用于研究低氧诱导因子(HIF)-1α在ACOD1介导的破骨细胞发育调节中的作用。RA患者的PBMC中的Itaconate水平与疾病活性成反比。ACOD1-缺陷小鼠在实验性关节炎中表现出增加的破骨细胞数量和骨侵蚀,而4-OI治疗减轻了体内炎症性骨质损失,并抑制了体外人和鼠类骨细胞分化。从机械上讲,ACOD1通过抑制琥珀酸酯脱氢酶的活性氧和HIF1α介导的有氧糖糖溶解的诱导来抑制破骨细胞分化。结论ACOD1和ITACONATE是炎性关节炎中破骨细胞分化和骨质流失的关键调节剂。
th' Doajmant 6 an autien 允 e 犯 C'OIC CEIFCATE my 妙、 r tis"ess purpose oi切 Tie Corrany Sutect td Sgs General Conditbns of Certfcation Seses aaialale on Tem' ad coniilbi 引 Sgs. Una.jtttrized al 七 Ratbn, 如 Gery or 怕 ditonoltiecon Appeaanceoftiis 由 qrrent 6 UNW1ui
电话:051.9201805 IS*dd。Pow Diviroc M o E eev,G.vcMd ot Pallsran blmabad i iJ-Iilir*i* d","D, vdi"e, orEE'g'。oo\ffcnr o'P'L!6 r'r"*bad' ii**'ictioa oi'i.r,'。c-veM。orPali'bn lslahabad'。i."-*i lt"i.- .r w"* R.$w$ Gov@eor of Pslb6a lslanabBd' ii**ii。 ia^i"i, "is."*e ed rqr@ros)。P'lisarl rsradabad ii ili,, pr",i,i o."it.p-.fl & spccior l!id' cs' Goq' orParis@ rsrmabad' i iGi*ii. pr*i,,i' a o"'itopme Bo.d' GoLemeDroiPurb Lorore' r ii'i**. pr,".ni ao*ao;Dot Boatd. coreme ol sbd!' K,trhj i iirr cr".i s-."i^. pr*,i,1, & Detelopn.Dcpammt 博士。傀儡!或 KPK ?shose ;.;il.d;iil;;, Pi;ni a otwt.i. 或 o.pan-'m。 covem' ot Barchis.,r' Quet, i;.菲。 iiiii;;;, Pk;;s & D.;.roprcDi Dep"mem,Gowmor oI cirsrr-Bortiian'
垂直腔体发射激光器(VCSEL)是高性能计算系统,数据中心和其他短距离光学网络中高速和功率短得分光学互连(OIS)的首选光源。这样的OI通常在0至70°C的温度范围内运行。但是,基于VCSEL的OIS的某些新兴应用,例如在某些军事系统中的汽车光学网络和光网络中,需要在温度范围更大的温度范围内运行,例如从 - 40到125°C。VCSEL是OI温度最敏感的组件,并且成本和功率效率所需的未冷却/未加热的操作需要降低温度依赖性的VCSEL,在温度范围更大的情况下运行。VCSER性能的温度依赖性源于光谱和共振波长偏移之间的光学增益和不匹配的变化。减轻这些效果的方法包括使用具有适当增益式失调的VCSEL和增益工程,以扩大光学增益频谱。本文研究了在大温度范围内优化运行的850 nm VCSEL。关键研究包括阈值 - 旧电流与性能参数(纸张A)的相关性和chire QW VCSels的设计,以稳定跨温度(Pa-per)。洞察设计为极端环境设计强大的VCSEL。