在俄罗斯于2022年2月入侵乌克兰后不久,欧盟禁止从俄罗斯进口大多数石油,但由于匈牙利,斯洛伐克和捷克共和国等国家依赖于能源供应。
广告系列成功。据估计,在典型的美国饮食中,精制的植物油现在最多可以赋予1/3卡路里!它们不仅在人造黄油中 - 它们无处不在,糖果,蛋白质和能量棒,烘焙食品,炸食品,披萨,炸玉米饼和玉米饼,中国外卖,薯条,薯条,椒盐脆饼,更玉米饼,蛋黄酱,蛋黄酱,微波爆米花,蛋糕糖霜以及免费的奶酪,奶酪,奶油,奶油和奶油和奶油奶油和奶油奶油和奶油奶油和奶油奶油和奶油奶油和奶油奶油和奶油奶油和奶油奶油和奶油奶油和奶油奶油和奶油奶油奶油和奶油奶油和奶油奶油和奶油奶油和奶油奶油和奶油;他们的最新化身是在“基于植物的”肉类替代品中,例如不可能的汉堡。营养支持饮料,例如Boost,并确保为工业种子油的木马马匹。
摘要 - Pertamina码头丙烯炼油厂的混乱操作 - VI Balongan涉及将燃料油转移到船上,带来了可能带来严重环境和经济后果的溢油风险。本研究旨在对掩体占领进行风险评估,以防止在炼油厂的爆炸式漏油。《油轮和码头国际安全指南》(ISGOTT)第六版是该评估的框架。本研究中采用的风险评估方法包括危害识别,结果分析和风险评估。已经确定了与掩体职业活动相关的潜在危害,例如设备故障,人为错误和不利天气条件。后果分析考虑了漏油对环境的潜在影响,包括海洋生物,沿海生态系统和附近社区。风险评估涉及根据历史数据,行业标准和专家意见评估潜在的漏油事件的可能性和严重性。缓解措施,例如安全协议,应急计划和维护程序,并将其纳入风险评估中。目标是最大程度地减少掩体职业运营期间漏油的可能性和严重性。
Cosmo石油营销开始向Yachiyo City提供100%可再生能源的电力〜旨在减少年度二氧化碳排放量。5,940吨在75个市政设施〜Cosmo Energy Group Company,Cosmo Oil Marketing Co.,Ltd。(以下是“ Cosmo Oil Marketing”)宣布,它已开始向100%的可再生能源提供可再生能源的电力1,2025 1。 在2020年,Yachiyo City宣布自己为“零碳城市”,并一直致力于环境保护和建立一个脱碳社会,以促进可持续的城市发展,目的是到2050年实现净零温室气体的排放。5,940吨在75个市政设施〜Cosmo Energy Group Company,Cosmo Oil Marketing Co.,Ltd。(以下是“ Cosmo Oil Marketing”)宣布,它已开始向100%的可再生能源提供可再生能源的电力1,2025 1。在2020年,Yachiyo City宣布自己为“零碳城市”,并一直致力于环境保护和建立一个脱碳社会,以促进可持续的城市发展,目的是到2050年实现净零温室气体的排放。此外,在Yachiyo City全球预防行动计划(行政操作,第五次修订版)中,该城市的目标是将全温室气体排放(CO2当量)降低34%,比2012财年的水平相比,将2030财年减少34%。作为为实现该计划做出贡献的倡议,Cosmo石油营销将为协议涵盖的Yachiyo City设施提供其可再生能源衍生的电力计划Cosmo Denki(电力)商业Green 2。该计划提供可再生能源派生的电力,并获得了非化石证书的认可,其跟踪信息与可再生能源有关,该信息属于日本的饲料中心(FIT)方案,例如由Cosmo Eco Power Co.,Ltd。,Ltd。,Cosmo Energy Group Company,Cosmo Eco Power Co.
evonik已确定了三个步骤,以提高相同粘度等级的效率,并降低了CO 2排放。第一步需要使用高级粘度指数设备,该指数提供了超高的粘度指数,并具有剪切稳定性,可优化油的粘度曲线以最大程度地提高效率。第二步是使用较低的粘度基油,从而进一步增加了发动机油的粘度指数。第三步是从汽油/柴油性能软件包切换到低粘性汽油的性能软件包。evonik已经调查了这种“三步方法”在最先进的发动机中的影响,该发动机是在现实的动态和静态发动机操作条件下,直至全负载。三步方法将同一SAE等级的燃油效率最大化超过1%,而不会损害石油消耗。三步方法不仅限于传统的内燃机,并且可以同样应用于混合动力发动机以及氢内燃机。
这项研究介绍了一种评估有效供应链管理实践(SCMP)的方法,这是任何国家经济的重要组成部分。提高行业的绩效需要有效实施SCMP,以可持续地解决与绩效相关的问题。为此,最优惠的方法(BWM)确定了四个确定的行业有效SCMP的挑战的权重,随后,替代排名顺序的方法考虑了两步归一化(AROMAN)评估了四个替代方案,以克服这些挑战。为了显示我们方法的适用性,肯尼亚国家石油公司被视为案例研究。结果表明,供应链行为者在提供运输和分销方面的合作是国家石油公司有效的SCMP的最合适替代方案。
油棕榈叶是修剪过程的副产品,在与硝酸镁的反应下,在900°C的钙化温度下成功用作二氧化硅的前体。基于使用XRD的产品表征并得到FTIR的支持,该技术以粉末形式产生MGO,MGSIO₃和MG₂SIO₄衍生物。刚果红的吸附过程中使用的准备粉末,这是一种对环境有毒的染料物质。所制备的材料能够在120分钟的理想平衡时间内吸附刚果红色,平均最终浓度为10.21 mg/l。吸附动力学遵循伪二阶。吸附过程遵循Temkin等温线模型,线性回归值接近1。这种吸附的结果表明,衍生产品具有吸附染料废物的潜力,这对水中的生命具有很大的影响。此外,在新材料作为吸附剂的开发中,迫切需要使用油棕叶的潜力,同时减少自然界的废物。
AI有望改变上游石油和天然气运营中的预测性维护,运营效率以及安全性和合规性。几个AI用例影响了这三个领域,并跨越了四个类别:实时连续咨询和洞察力,复杂的建模和优化,预测分析以及预测,内容创建和集成。上游组织应评估这些用途案例可以生成的价值,而在其独特环境中实现用例的复杂性。识别使用AI,塑造AI使用案例的有形和可量化的机会,并优先考虑和实施具有最高价值的用例相对于复杂性,为上游石油和天然气中AI的期望转向现实提供了途径。
Centrium Energy Solutions是一家国内供应商,拥有5,200多家石油和天然气行业的高质量原材料和中间体。化学公司提供优化的库存,无与伦比的技术支持和简化的物流,以帮助客户降低成本并提高运营效率。Centrium Energy Solutions通过其母公司,大教堂控股公司和姊妹公司,Indspyre Solutions和“基本要素”的支持,得到了28年的化学分配专业知识的支持。承诺重新置化化学采购和加强国内供应链,Centrium Energy Solutions为石油和天然气行业的化学分配树立了新的标准。有关更多信息,请访问centriumenergy.com。
表 3.1. 2022 年和 2023 年南达科他州布鲁金斯、米勒和海莫尔整个生长季 (GP) 收集的每月降雨量和温度数据。 ........................................................................................................... 30 表 3.2. 东部和中部 SD 种植前的土壤物理和化学特性 ........................................................................................................................... 31 表 4.1. 2022 年和 2023 年南达科他州布鲁金斯、米勒和海莫尔向日葵生长度日(基准 6.7 °C)。 ........................................................................................................... 40 表 4.2. 2022 年和 2023 年布鲁金斯不同氮肥施用率和位置下的 V-10、R-8 阶段叶片叶绿素含量(2022 年)、R-1 和 R-5 阶段叶片叶绿素含量(2023 年)、植物高度(cm)和茎直径(mm)。 ........................................................................................... 46不同氮肥施用量下向日葵 V-10 阶段叶片叶绿素含量的放置分析 Brookings 2022。 ......................................................................................... 46 表 4.4. 不同氮肥施用量下向日葵株高(cm)、茎直径(cm)的放置分析 Brookings 2023。 ............................................................................................. 47 表 4.5. 不同氮肥施用量和放置条件下 V-10、R-8 阶段(2022)的叶片叶绿素含量,R-1、R-5 阶段(2023)的叶片叶绿素含量,植物高度(cm) Miller 2022 和 Highmore 2023................ 48 表 4.6. 不同氮肥施用量和放置条件下平均 NDVI 对 Brookings 2022 和 2023 的影响。 ............................................................................................. 51表 4.8. 2022 年和 2023 年 Miller 和 Highmore 不同 N 施肥量和位置对平均 NDVI 的影响。 ........................................................................................... 52 表 4.8. 2022 年 Brookings 和 2022 年 Miller 不同 N 施肥量对平均 NDVI 的影响的放置分析。 ........................................................................... 53 表 4.9. 2022 年和 2023 年 Brookings 不同 N 施肥量和位置下向日葵的头直径(cm)、百粒重(克)、种子产量(kg ha -1 )、蛋白质浓度(g kg -1 )、油浓度(g kg -1 )和油产量(kg ha -1 )。 ............................................................................. 64 表 4.10. 2022 年 Brookings 不同 N 施肥量下向日葵的产量(kg ha -1 )和蛋白质浓度(g kg -1 )的放置分析。 ........................................................... 65穗直径(厘米)、百粒种子重量(克)、种子产量(千克/公顷)、Miller 2022 和 Highmore 2023 在不同氮肥施用量和地点下向日葵的蛋白质浓度(g kg -1 )油浓度(g kg -1 )和油产量(kg ha -1 )。 ............................................................................................................................. 66 表 4.12. 氮肥成本、葵花籽价格、经济最佳施氮量(EONR)。 ........................................................................................................................................... 67 表 4.13. Brookings 2022、Miller 2022、Brookings 2023 和 Highmore 2023 的收获后茎秆氮含量(kg ha -1 )。 ........................................................................................... 69 表 4.14. Brookings 2022 和 2023 深度(0-15 和 15-30 cm)的收获后土壤 NO 3 µg g -1 和 NH 4 µg g -1。 ......................................................................................................... 71 Miller 2022 和 Highmore 2023 深度(0-15 和 15-30 cm)处收获后土壤 NO 3 (µg g -1 ) 和 NH 4 (µg g -1 )。............................................................................. 72