摘要。Fujisaki-Okamoto Transform(FO)是实现Quantum Post-Quantum键封装机制(KEMS)选择的首选方法。通过重新加密步骤,FO中的重要步骤正在增强解密/解密算法 - 重新加密解密的消息以检查是否使用了正确的加密随机性。在解决安全问题(Ciphertext-Malleability)时,重新加密已成为引入侧渠道漏洞,并且计算昂贵,这使设计师促使设计师搜索替代方案。在这项工作中,我们对此类替代方案进行了全面研究。我们将中央安全属性,计算刚度正式化,并表明它足以获得CCA安全性。我们提出了一个用于分析算法的框架,该算法可以取代重新加密并仍然达到刚性,并在此框架中分析现有建议。在此过程中,我们选择了一个新颖的QROM安全声明,以根据确定性的PKE方案明确拒绝KEM,这是迄今为止仅在需要基本PKE方案难以确定的量子属性时才有可能的。
请引用本文:Toda and Okamoto,(2020)。通过将大分子直接递送到水稻卵细胞和受精卵中的基因表达和基因组编辑系统,Bio-protocol 10 (14): e3681。DOI:10.21769/BioProtoc.3681。
那须嘉榮 1,2, *, 青柳洋子 1 , 朱若飞 1 , 冈本真美子 1 , 矢野光武 1 , 甲斐健太郎 1 , 3
键由玻璃的磷酸盐成分贡献。结果,Inaba等人对Young的模量的预测。[3]比依赖MM模型中使用的氧化物解离能的值更接近测量值,特别是对于磷酸盐玻璃。在最近对Okamoto等人的Zn-SN-磷酸玻璃机械性能的研究中。[4],通过使用金属氧键距离和金属离子配位数(由X射线和中子衍射研究确定[5-7])来修改Inaba模型[5-7],以钙化离子堆积分数(V P)。此外,Okamoto等。修改了Inaba等人使用的解离能。与四面体相比,与邻近的p -tetrahedra相比,通过一个(q 1)或两个(q 2)布里牛根键相比,要考虑不同的协调环境,特别是对于SN 2 + -Polyhedra,并说明了孤立的PO 4 3-(Q 0)四面体的更大刚度。Okamoto的单个氧化物解离能和体积的新值改善了对弹性模量和维克斯硬度的预测,这些弹性模量和维克硬度的硬度是几个系列X Zno-(67 -x)Sno -33p 2 O 5玻璃,具有有用的光子末端特性的组合物[4]。最近,Shi等人。[8]通过指出构成氧化物玻璃结构的金属多层的有效体积并不是构成多面体的离子半径的总和,但还必须在该多面体中包括无知的空间。通过更换
Murakami K,Hamazaki N,Hamada N,Nagamatsu G,Okamoto I,Ohta H,Nosaka Y,Semba Y,Hayashi K.在体外雄性小鼠的功能性卵母细胞的产生。 div>自然。 div>2023年3月; 615(7954):900-906。 doi:10.1038 / s41586-023-05834-x。 div>
ACTN3 R577X多态性。 J锻炼营养生物化学。 2015; 19(3):157-64。 3 Kikuchi N,Yoshida S,Min SK,Lee K,Sakamaki-Sunaga M,Okamoto T等。 ACTN3 R577X基因型与日本人群中的肌肉功能有关。 Appl Physiol Nutr Metab。 2015; 40(4):316-22。 4 Gatfield D,Izaurralde E.胡说八道介导的信使RNA衰变是由果蝇的核核酸裂解引发的。 自然。 2004; 429(6991):575-8。 5 Tuladhar R,Yeu Y,Tyler Piazza J,Tan Z,Rene Clemenceau J,Wu X等。 基于CRISPR-CAS9的诱变经常引起目标mRNA的正调。 nat Commun。 2019; 10(1):4056。ACTN3 R577X多态性。J锻炼营养生物化学。2015; 19(3):157-64。3 Kikuchi N,Yoshida S,Min SK,Lee K,Sakamaki-Sunaga M,Okamoto T等。 ACTN3 R577X基因型与日本人群中的肌肉功能有关。 Appl Physiol Nutr Metab。 2015; 40(4):316-22。 4 Gatfield D,Izaurralde E.胡说八道介导的信使RNA衰变是由果蝇的核核酸裂解引发的。 自然。 2004; 429(6991):575-8。 5 Tuladhar R,Yeu Y,Tyler Piazza J,Tan Z,Rene Clemenceau J,Wu X等。 基于CRISPR-CAS9的诱变经常引起目标mRNA的正调。 nat Commun。 2019; 10(1):4056。3 Kikuchi N,Yoshida S,Min SK,Lee K,Sakamaki-Sunaga M,Okamoto T等。ACTN3 R577X基因型与日本人群中的肌肉功能有关。Appl Physiol Nutr Metab。2015; 40(4):316-22。4 Gatfield D,Izaurralde E.胡说八道介导的信使RNA衰变是由果蝇的核核酸裂解引发的。自然。2004; 429(6991):575-8。5 Tuladhar R,Yeu Y,Tyler Piazza J,Tan Z,Rene Clemenceau J,Wu X等。基于CRISPR-CAS9的诱变经常引起目标mRNA的正调。nat Commun。2019; 10(1):4056。
Old 7 , 8 , Nicolaus Kr € 9 , Mohamad Mohty 10 , Amage 11 , Skinicro Okamoto 12 , Naeem Chaudhri , Celsy Cornwall 17 , Alaa Elhaddad 18 , Lisa M. Force 19 , Christ Fruos 20 , Ben Jacobs 26 , Hee-Je 27 , Minana 28 , Leslie Lehmann 29 , Regis 33 , 34 , 35 ,安德森·约〜到西蒙妮36,木材40,Isdinal 42、42、13,Dieter Ieder 46、47、48
摘要 过去二十年的流行病学研究强调了影响夏威夷原住民和太平洋岛民青少年的药物使用差异,以及缺乏解决此类差异的有效方法(Okamoto 等人,《亚裔美国人心理学杂志》10(3):239–248, 2019)。Ho'ouna Pono 课程是一项以文化为基础、由教师实施、视频增强的药物使用预防计划,已在夏威夷农村地区的大规模试验中证明其有效性(Okamoto,《亚裔美国人心理学杂志》10(3):239–248, 2019)。尽管 Ho'ouna Pono 等预防计划有可能改善健康差异并解决青少年药物使用问题,但其在夏威夷各地的传播和实施都不太顺利,这引出了一个问题:为什么最需要这些计划的社区没有使用有效的预防计划?本研究使用概念图来了解先前确定的实施障碍,并为 Ho'ouna Pono 制定实施策略。七位夏威夷教育部 (HIDOE) 的教育领导和管理人员对 Ho'ouna Pono 实施障碍进行了分类(例如“HIDOE 缺乏资金来支持预防课程”),命名了概念,并评估了障碍的感知影响和难度。多维尺度和聚类分析产生了五聚类解决方案:(1)Kumu(夏威夷语中意为老师)控制,(2)学校层面的支持,(3)课程,(4)学生态度 + 心态(家庭 + 社区),以及 (5) 政策。参与者评分确定了八个高影响和低难度的障碍。讨论揭示了障碍之间的重要交集,表明需要协调和跨级别的实施策略来支持 Ho'ouna Pono 的维持。使用参与者自己的语言集思广益的实施策略强调需要在学校环境中采用参与式方法,以双向分享最佳地维持药物滥用预防计划的方法。
2背景2 2.1通用晶格攻击。。。。。。。。。。。。。。。。。。。。。2 2.2安全假设。。。。。。。。。。。。。。。。。。。。。。4 2.2.1研究ASPPTIONS的安全级别的重要性。。。。。。。。。。。。。。。。。。。。。。。。。5 2.2.2加密系统中使用的假设。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 2.2.3计算与决策LWE变量。。。。。。。7 2.2.4 LWE与LWR。。。。。。。。。。。。。。。。。。。。。7 2.2.5部分校正加密系统。。。。。。。。。。。8 2.2.6安全假设。。。。。。。。。。。。。。。。。。。8 2.2.7基本的REGEV加密系统。。。。。。。。。。。。。。10 2.3一般设计框架和可证明的安全性。。。。。。。12 2.3.1 Fujisaki Okamoto变换(有隐性拒绝)12 2.3.2安全损失。。。。。。。。。。。。。。。。。。。。。。。。13 2.3.3菲亚特 - 沙米尔变换。。。。。。。。。。。。。。。。14 2.4关于回合2 C软件的一般说明。。。。。。。。。。。。。15 2.4.1正确性。。。。。。。。。。。。。。。。。。。。。。。。15 2.4.2防止正时攻击。。。。。。。。。。。。15 2.4.3基准。。。。。。。。。。。。。。。。。。。。。。。。16 2.4.4将来的速度。。。。。。。。。。。。。。。。。。。。。。。16
作者的完整列表:Chizuru Sawabe;东京大学,高级材料科学系,Shohei Frontier Sciences Kumagai研究生院;东京大学,高级材料科学系Mitani,Masato;东京大学,国内科学研究生院伊西伊(Hiroyuki); Masakazu的Tsukuba Yamagishi大学;美国国家技术学院,福拉玛学院萨加亚马,哈吉姆;材料结构研究所科学,高能加速器研究组织Kumai,Reiji; Hiroyasu材料结构科学研究所SATO研究所高能加速器研究组织(KEK);里格库公司(Rigaku Corporation),Takeya,Jun;东京大学,高级材料科学系,俄克冈俄克冈大学;东京大学,高级材料科学系,边境科学学院