东京,2023 年 5 月 25 日——安斯泰来制药公司 (TSE: 4503,总裁兼首席执行官:Naoki Okamura,“安斯泰来”)将于 6 月 2 日至 6 日举行的 2023 年美国临床肿瘤学会 (ASCO) 年会上分享其不断扩大的已获批和在研癌症疗法组合的新研究成果。总共将发表 15 篇摘要,涵盖三种已获批药物和一种在研疗法,突显了该公司专注于寻求针对难以治疗的癌症的靶向疗法,这些癌症的治疗方法很少,包括前列腺癌、尿路上皮癌、胃/胃食管交界处癌 (GEJ) 和头颈癌,以及急性髓系白血病 (AML)。安斯泰来肿瘤学开发负责人、高级副总裁 Ahsan Arozullah 医学博士、公共卫生硕士表示:“在 ASCO 上展示的研究反映了我们对如何继续扩大我们的肿瘤学产品组合和产品线的广度和实用性,以服务肿瘤学界和癌症患者,尤其是晚期患者。在我们的临床开发项目中,这些数据增加了越来越多的证据,并支持我们努力寻找影响疾病进程的方法,并重新定义最需要的患者的可能性。” 2023 年 ASCO 年会的亮点包括:
东京,2024 年 3 月 26 日——安斯泰来制药公司(TSE:4503,总裁兼首席执行官:Naoki Okamura,“安斯泰来”)今天宣布,2024 年 3 月 26 日,日本厚生劳动省 (MHLW) 批准了抗紧密连接蛋白 18.2 (CLDN18.2) 单克隆抗体 VYLOY™(zolbetuximab),用于治疗 CLDN18.2 阳性、不可切除、晚期或复发性胃癌患者。VYLOY 是全球首个也是唯一一个获得监管机构批准的 CLDN18.2 靶向疗法。由于早期症状与其他更常见的胃病重叠,胃癌通常在晚期或转移期才被诊断出来。 1 尽管日本努力减少胃癌的影响,但胃癌仍然是日本第三大致命癌症,2022 年诊断出 126,724 例。 2 Moitreyee Chatterjee-Kishore,博士,工商管理硕士,安斯泰来高级副总裁兼免疫肿瘤学开发主管 “厚生劳动省批准 VYLOY 标志着胃癌治疗的新时代,为患有这种毁灭性疾病的 CLDN18.2 阳性患者提供了第一个也是唯一的靶向治疗选择。安斯泰来很自豪能够帮助解决日本对这种难以治疗的癌症的迫切治疗需求,日本的发病率位居全球前列。重要的是,此次批准有可能为符合条件的患者提供更多宝贵的时间与亲人相处,兑现我们改善患者治疗效果的承诺。” SPOTLIGHT 试验首席研究员、日本柏市国立癌症中心东医院胃肠肿瘤科主任 Kohei Shitara 医学博士表示:“开发新的靶向疗法对于晚期胃腺癌等疾病至关重要,这种疾病的治疗选择非常有限,而且往往在晚期才被发现。作为 3 期 SPOTLIGHT 临床试验的首席研究员,我亲眼目睹了 VYLOY 联合化疗治疗患者的无进展生存期和总生存期与安慰剂联合化疗治疗患者的无进展生存期和总生存期相比有显著改善。这些结果支持 VYLOY 成为日本 CLDN18.2 阳性人群的新治疗选择,仅在 2022 年,日本就有近 44,000 人死于胃癌。”此次批准基于 3 期 SPOTLIGHT 和 GLOW 临床试验的结果,该试验针对局部晚期不可切除或转移性 HER2-
美国首个也是唯一一个 CLDN18.2 靶向疗法 东京,2024 年 5 月 30 日——安斯泰来制药公司(TSE:4503,总裁兼首席执行官:Naoki Okamura,“安斯泰来”)今天宣布,美国食品药品监督管理局 (FDA) 已承认该公司重新提交了 zolbetuximab 的生物制品许可申请 (BLA),zolbetuximab 是一种一流的试验性 claudin (CLDN) 18.2 靶向单克隆抗体,用于一线治疗局部晚期不可切除或转移性人表皮生长因子受体 2 (HER2) 阴性胃或胃食管连接处 (GEJ) 腺癌的成人患者,其肿瘤为 CLDN18.2 阳性。一旦获得批准,zolbetuximab 将成为美国批准针对该患者群体的首个 CLDN18.2 靶向治疗药物 根据处方药使用者付费法案 (PDUFA),FDA 设定了新的目标行动日期为 2024 年 11 月 9 日。 在美国,据估计,2024 年将有 26,890 人被诊断出患有胃癌,10,880 人将死于该疾病。1 由于早期胃癌症状经常与更常见的胃相关疾病重叠,因此胃癌通常在晚期或转移性阶段被诊断出来,或者在胃癌从肿瘤来源扩散到其他身体组织或器官后才被诊断出来。2 转移性患者的五年相对生存率为 7%。1 Moitreyee Chatterjee-Kishore,博士,工商管理硕士,安斯泰来高级副总裁兼免疫肿瘤学开发主管 “安斯泰来致力于为难治性癌症推出新的靶向疗法。晚期胃癌或 GEJ 癌患者通常面临着巨大的未满足需求,FDA 对 zolbetuximab BLA 重新提交的认可,使我们距离为美国面临这种致命疾病的合格患者提供这一重要治疗选择又近了一步。” zolbetuximab BLA 于 2024 年 5 月 9 日重新提交,此前 FDA 于 2024 年 1 月 4 日因在设施许可前检查中发现第三方制造缺陷而发出了完整回复信。FDA 未对 zolbetuximab 的临床数据(包括疗效或安全性)提出任何担忧,也未要求进行额外的临床研究来支持 BLA 批准。zolbetuximab BLA 基于 3 期 SPOTLIGHT 和 GLOW 临床试验的结果。 3,4 SPOTLIGHT 研究评估了佐贝妥昔单抗加 mFOLFOX6(一种包括奥沙利铂、亚叶酸钙和氟尿嘧啶的联合方案)与安慰剂加 mFOLFOX6 的疗效。GLOW 研究评估了佐贝妥昔单抗加 CAPOX(一种包括卡培他滨和奥沙利铂的联合化疗方案)与安慰剂加 CAPOX 的疗效。
1。Haendel MA,Chute CG,Robinson PN。 分类,本体论和精密医学。 n Engl J Med。 2018; 379:1452-1462。 2。 Zehir A,Benayed R,Shah RH等。 对征收癌症的突变景观揭示了10,000名患者的前瞻性临床测序。 nat Med。 2017; 23:703-713。 3。 Kou T,Kanai M,Matsumoto S,Okuno Y,MutoM。在癌症治疗中进行临床测序的可能性。 JPN J Clin Oncol。 2016; 46:399-406。 4。 Kou T,Kanai M,Yamamoto Y等。 在晚期实体瘤患者中使用下一代测序的多重基因测定法进行临床测序。 癌症科学。 2017; 108:1440-1446。 5。 Sunami K,Ichikawa H,Kubo T等。 在临床环境中,针对114个癌症相关基因的面板测试的可行性和实用性:基于医院的研究。 癌症科学。 2019; 110:1480-1490。 6。 Le Tourneau C,Delord J-P,GonçalvesA等。 基于肿瘤分子分析与常规癌症(SHIVA)的分子靶向治疗:一种多中心,开放标签,概念验证,随机,随机,受控的2期试验。 lancet oncol。 2015; 16:1324-1334。 7。 TrédanO,Wang Q,Pissaloux D等。 分子筛选程序,以选择基于分子的建议疗法,用于大量癌症患者:分析探险仪试验。 Ann Oncol。 2019; 30:757-765。 8。Haendel MA,Chute CG,Robinson PN。分类,本体论和精密医学。n Engl J Med。2018; 379:1452-1462。 2。 Zehir A,Benayed R,Shah RH等。 对征收癌症的突变景观揭示了10,000名患者的前瞻性临床测序。 nat Med。 2017; 23:703-713。 3。 Kou T,Kanai M,Matsumoto S,Okuno Y,MutoM。在癌症治疗中进行临床测序的可能性。 JPN J Clin Oncol。 2016; 46:399-406。 4。 Kou T,Kanai M,Yamamoto Y等。 在晚期实体瘤患者中使用下一代测序的多重基因测定法进行临床测序。 癌症科学。 2017; 108:1440-1446。 5。 Sunami K,Ichikawa H,Kubo T等。 在临床环境中,针对114个癌症相关基因的面板测试的可行性和实用性:基于医院的研究。 癌症科学。 2019; 110:1480-1490。 6。 Le Tourneau C,Delord J-P,GonçalvesA等。 基于肿瘤分子分析与常规癌症(SHIVA)的分子靶向治疗:一种多中心,开放标签,概念验证,随机,随机,受控的2期试验。 lancet oncol。 2015; 16:1324-1334。 7。 TrédanO,Wang Q,Pissaloux D等。 分子筛选程序,以选择基于分子的建议疗法,用于大量癌症患者:分析探险仪试验。 Ann Oncol。 2019; 30:757-765。 8。2018; 379:1452-1462。2。Zehir A,Benayed R,Shah RH等。对征收癌症的突变景观揭示了10,000名患者的前瞻性临床测序。nat Med。2017; 23:703-713。 3。 Kou T,Kanai M,Matsumoto S,Okuno Y,MutoM。在癌症治疗中进行临床测序的可能性。 JPN J Clin Oncol。 2016; 46:399-406。 4。 Kou T,Kanai M,Yamamoto Y等。 在晚期实体瘤患者中使用下一代测序的多重基因测定法进行临床测序。 癌症科学。 2017; 108:1440-1446。 5。 Sunami K,Ichikawa H,Kubo T等。 在临床环境中,针对114个癌症相关基因的面板测试的可行性和实用性:基于医院的研究。 癌症科学。 2019; 110:1480-1490。 6。 Le Tourneau C,Delord J-P,GonçalvesA等。 基于肿瘤分子分析与常规癌症(SHIVA)的分子靶向治疗:一种多中心,开放标签,概念验证,随机,随机,受控的2期试验。 lancet oncol。 2015; 16:1324-1334。 7。 TrédanO,Wang Q,Pissaloux D等。 分子筛选程序,以选择基于分子的建议疗法,用于大量癌症患者:分析探险仪试验。 Ann Oncol。 2019; 30:757-765。 8。2017; 23:703-713。3。Kou T,Kanai M,Matsumoto S,Okuno Y,MutoM。在癌症治疗中进行临床测序的可能性。JPN J Clin Oncol。2016; 46:399-406。 4。 Kou T,Kanai M,Yamamoto Y等。 在晚期实体瘤患者中使用下一代测序的多重基因测定法进行临床测序。 癌症科学。 2017; 108:1440-1446。 5。 Sunami K,Ichikawa H,Kubo T等。 在临床环境中,针对114个癌症相关基因的面板测试的可行性和实用性:基于医院的研究。 癌症科学。 2019; 110:1480-1490。 6。 Le Tourneau C,Delord J-P,GonçalvesA等。 基于肿瘤分子分析与常规癌症(SHIVA)的分子靶向治疗:一种多中心,开放标签,概念验证,随机,随机,受控的2期试验。 lancet oncol。 2015; 16:1324-1334。 7。 TrédanO,Wang Q,Pissaloux D等。 分子筛选程序,以选择基于分子的建议疗法,用于大量癌症患者:分析探险仪试验。 Ann Oncol。 2019; 30:757-765。 8。2016; 46:399-406。4。Kou T,Kanai M,Yamamoto Y等。 在晚期实体瘤患者中使用下一代测序的多重基因测定法进行临床测序。 癌症科学。 2017; 108:1440-1446。 5。 Sunami K,Ichikawa H,Kubo T等。 在临床环境中,针对114个癌症相关基因的面板测试的可行性和实用性:基于医院的研究。 癌症科学。 2019; 110:1480-1490。 6。 Le Tourneau C,Delord J-P,GonçalvesA等。 基于肿瘤分子分析与常规癌症(SHIVA)的分子靶向治疗:一种多中心,开放标签,概念验证,随机,随机,受控的2期试验。 lancet oncol。 2015; 16:1324-1334。 7。 TrédanO,Wang Q,Pissaloux D等。 分子筛选程序,以选择基于分子的建议疗法,用于大量癌症患者:分析探险仪试验。 Ann Oncol。 2019; 30:757-765。 8。Kou T,Kanai M,Yamamoto Y等。在晚期实体瘤患者中使用下一代测序的多重基因测定法进行临床测序。癌症科学。2017; 108:1440-1446。 5。 Sunami K,Ichikawa H,Kubo T等。 在临床环境中,针对114个癌症相关基因的面板测试的可行性和实用性:基于医院的研究。 癌症科学。 2019; 110:1480-1490。 6。 Le Tourneau C,Delord J-P,GonçalvesA等。 基于肿瘤分子分析与常规癌症(SHIVA)的分子靶向治疗:一种多中心,开放标签,概念验证,随机,随机,受控的2期试验。 lancet oncol。 2015; 16:1324-1334。 7。 TrédanO,Wang Q,Pissaloux D等。 分子筛选程序,以选择基于分子的建议疗法,用于大量癌症患者:分析探险仪试验。 Ann Oncol。 2019; 30:757-765。 8。2017; 108:1440-1446。5。Sunami K,Ichikawa H,Kubo T等。在临床环境中,针对114个癌症相关基因的面板测试的可行性和实用性:基于医院的研究。癌症科学。2019; 110:1480-1490。 6。 Le Tourneau C,Delord J-P,GonçalvesA等。 基于肿瘤分子分析与常规癌症(SHIVA)的分子靶向治疗:一种多中心,开放标签,概念验证,随机,随机,受控的2期试验。 lancet oncol。 2015; 16:1324-1334。 7。 TrédanO,Wang Q,Pissaloux D等。 分子筛选程序,以选择基于分子的建议疗法,用于大量癌症患者:分析探险仪试验。 Ann Oncol。 2019; 30:757-765。 8。2019; 110:1480-1490。6。Le Tourneau C,Delord J-P,GonçalvesA等。 基于肿瘤分子分析与常规癌症(SHIVA)的分子靶向治疗:一种多中心,开放标签,概念验证,随机,随机,受控的2期试验。 lancet oncol。 2015; 16:1324-1334。 7。 TrédanO,Wang Q,Pissaloux D等。 分子筛选程序,以选择基于分子的建议疗法,用于大量癌症患者:分析探险仪试验。 Ann Oncol。 2019; 30:757-765。 8。Le Tourneau C,Delord J-P,GonçalvesA等。基于肿瘤分子分析与常规癌症(SHIVA)的分子靶向治疗:一种多中心,开放标签,概念验证,随机,随机,受控的2期试验。lancet oncol。2015; 16:1324-1334。 7。 TrédanO,Wang Q,Pissaloux D等。 分子筛选程序,以选择基于分子的建议疗法,用于大量癌症患者:分析探险仪试验。 Ann Oncol。 2019; 30:757-765。 8。2015; 16:1324-1334。7。TrédanO,Wang Q,Pissaloux D等。分子筛选程序,以选择基于分子的建议疗法,用于大量癌症患者:分析探险仪试验。Ann Oncol。 2019; 30:757-765。 8。Ann Oncol。2019; 30:757-765。8。Frampton GM,Fichtenholtz A,Otto GA等。基于据称平行DNA测序的临床癌症基因组分析测试的开发和验证。nat生物技术。2013; 31:1023-1031。 9。 Van Cutsem E,KöhneCH,Hitre E等。 西妥昔单抗和化学疗法作为转移性结直肠癌的初始治疗方法。 n Engl J Med。 2009; 360:1408-1417。 10。 日本癌症协会。 癌症诊断和治疗中下一代测序的临床实践指南(2.0版); 2020。 11。 Sunami K,Takahashi H,Tsuchihara K等。 临床实践指南,用于癌症诊断和治疗中的下一代测序(1.0版)。 癌症科学。 2018; 109:2980-2985。 12。 Chakravarty D,Gao J,Phillips SM等。 Oncokb:精确的Ogy知识库。 JCO Precis Oncol。 2017.1:PO.17.00011。 13。 Sicklick JK,Kato S,Okamura R等。 癌症患者的分子分析可以实现个性化联合疗法:I-Predict研究。 nat Med。 2019; 25:744-750。 14。 Dalton WB,Forde PM,Kang H等。 肿瘤学诊所的个性化医学:约翰·霍普金斯分子肿瘤委员会的实施和结果。 JCO Precis Oncol。 2017; 1:1-19。 15。 Pishvaian MJ,Blais EM,Brody JR等。 lancet oncol。 2020; 21:508-518。 16。2013; 31:1023-1031。9。Van Cutsem E,KöhneCH,Hitre E等。 西妥昔单抗和化学疗法作为转移性结直肠癌的初始治疗方法。 n Engl J Med。 2009; 360:1408-1417。 10。 日本癌症协会。 癌症诊断和治疗中下一代测序的临床实践指南(2.0版); 2020。 11。 Sunami K,Takahashi H,Tsuchihara K等。 临床实践指南,用于癌症诊断和治疗中的下一代测序(1.0版)。 癌症科学。 2018; 109:2980-2985。 12。 Chakravarty D,Gao J,Phillips SM等。 Oncokb:精确的Ogy知识库。 JCO Precis Oncol。 2017.1:PO.17.00011。 13。 Sicklick JK,Kato S,Okamura R等。 癌症患者的分子分析可以实现个性化联合疗法:I-Predict研究。 nat Med。 2019; 25:744-750。 14。 Dalton WB,Forde PM,Kang H等。 肿瘤学诊所的个性化医学:约翰·霍普金斯分子肿瘤委员会的实施和结果。 JCO Precis Oncol。 2017; 1:1-19。 15。 Pishvaian MJ,Blais EM,Brody JR等。 lancet oncol。 2020; 21:508-518。 16。Van Cutsem E,KöhneCH,Hitre E等。西妥昔单抗和化学疗法作为转移性结直肠癌的初始治疗方法。n Engl J Med。2009; 360:1408-1417。 10。 日本癌症协会。 癌症诊断和治疗中下一代测序的临床实践指南(2.0版); 2020。 11。 Sunami K,Takahashi H,Tsuchihara K等。 临床实践指南,用于癌症诊断和治疗中的下一代测序(1.0版)。 癌症科学。 2018; 109:2980-2985。 12。 Chakravarty D,Gao J,Phillips SM等。 Oncokb:精确的Ogy知识库。 JCO Precis Oncol。 2017.1:PO.17.00011。 13。 Sicklick JK,Kato S,Okamura R等。 癌症患者的分子分析可以实现个性化联合疗法:I-Predict研究。 nat Med。 2019; 25:744-750。 14。 Dalton WB,Forde PM,Kang H等。 肿瘤学诊所的个性化医学:约翰·霍普金斯分子肿瘤委员会的实施和结果。 JCO Precis Oncol。 2017; 1:1-19。 15。 Pishvaian MJ,Blais EM,Brody JR等。 lancet oncol。 2020; 21:508-518。 16。2009; 360:1408-1417。10。日本癌症协会。癌症诊断和治疗中下一代测序的临床实践指南(2.0版); 2020。11。Sunami K,Takahashi H,Tsuchihara K等。临床实践指南,用于癌症诊断和治疗中的下一代测序(1.0版)。癌症科学。2018; 109:2980-2985。 12。 Chakravarty D,Gao J,Phillips SM等。 Oncokb:精确的Ogy知识库。 JCO Precis Oncol。 2017.1:PO.17.00011。 13。 Sicklick JK,Kato S,Okamura R等。 癌症患者的分子分析可以实现个性化联合疗法:I-Predict研究。 nat Med。 2019; 25:744-750。 14。 Dalton WB,Forde PM,Kang H等。 肿瘤学诊所的个性化医学:约翰·霍普金斯分子肿瘤委员会的实施和结果。 JCO Precis Oncol。 2017; 1:1-19。 15。 Pishvaian MJ,Blais EM,Brody JR等。 lancet oncol。 2020; 21:508-518。 16。2018; 109:2980-2985。12。Chakravarty D,Gao J,Phillips SM等。Oncokb:精确的Ogy知识库。JCO Precis Oncol。2017.1:PO.17.00011。13。Sicklick JK,Kato S,Okamura R等。癌症患者的分子分析可以实现个性化联合疗法:I-Predict研究。nat Med。2019; 25:744-750。 14。 Dalton WB,Forde PM,Kang H等。 肿瘤学诊所的个性化医学:约翰·霍普金斯分子肿瘤委员会的实施和结果。 JCO Precis Oncol。 2017; 1:1-19。 15。 Pishvaian MJ,Blais EM,Brody JR等。 lancet oncol。 2020; 21:508-518。 16。2019; 25:744-750。14。Dalton WB,Forde PM,Kang H等。 肿瘤学诊所的个性化医学:约翰·霍普金斯分子肿瘤委员会的实施和结果。 JCO Precis Oncol。 2017; 1:1-19。 15。 Pishvaian MJ,Blais EM,Brody JR等。 lancet oncol。 2020; 21:508-518。 16。Dalton WB,Forde PM,Kang H等。肿瘤学诊所的个性化医学:约翰·霍普金斯分子肿瘤委员会的实施和结果。JCO Precis Oncol。2017; 1:1-19。 15。 Pishvaian MJ,Blais EM,Brody JR等。 lancet oncol。 2020; 21:508-518。 16。2017; 1:1-19。15。Pishvaian MJ,Blais EM,Brody JR等。lancet oncol。2020; 21:508-518。16。胰腺癌患者的总体存活率接受了伴侣分析后接受匹配的疗法:对您的肿瘤登记试验的回顾性分析。Rekhtman N,Leighl NB,Somerfield MR。分子检测肺癌患者表皮生长因子抑制剂和变性淋巴瘤激酶酪氨酸激酶抑制剂的分子测试:美国临床肿瘤学会认可
[1] M.[2] H. Aoyama,K。Ishikawa,J。Seki,M。Okamura,S。Ishimura和Y. Satsumi,“矿山检测机器人系统的开发”,《国际高级机器人系统杂志》,第1卷。4,不。2,p。 25,2007。[在线]。可用:https://doi.org/10.5772/5693 [3] S. B. I Badia,U。Bernardet,A。Guanella,P.Pyk和P.4,不。2,p。 21,2007。[在线]。可用:https://doi.org/10.5772/5697 [4] ICBL-CMC,“地雷监视器2015”,禁止地雷的国际运动 - 加拿大集群弹药联盟,加拿大,2015年。[5] I. Makki,R。Younes,C。Francis,T。Bianchi和M. Zucchetti,“使用高光谱成像进行地雷检测的调查”,ISPRS摄影测量和遥感杂志,第1卷。124,pp。40 - 53,2017。[在线]。Available: http://www.sciencedirect.com/science/article/pii/S0924271616306451 [6] D. Guelle, M. Gaal, M. Bertovic, C. Mueller, M. Scharmach, and M. Pavlovic, “South-east europe interim report field trial croatia: Itep- project systematic test and evaluation of metal detectors - STEMD,”联邦材料研究与测试研究所(BAM),柏林,德国,2007年。[7] C. Castiblanco,J。Rodriguez,I。Mondrag´on,C。Parra和J. Colorado,用于爆炸性地雷检测的空中无人机,2014年1月1日,第1卷。253,pp。107–114。7,不。3,pp。813–819,2014。[8] X.[9] C. P. Gooneratne,S。C。Mukhopahyay和G. S. Gupta,“地雷检测的传感技术的审查:基于车辆的方法:无人车的方法”,pp。401–407,2004年12月。[10] P. Gao和L. M. Collins,“陆地矿山和小型未探索的陆地矿山的二维一般性似然比测试”,Signal Processing,第1卷。80,不。8,pp。1669 - 1686,2000。[在线]。可用:http://www.sciendirect.com/science/article/pii/s0165168400001006 [11]7,pp。107 259–107 269,2019。[12] J. Colorado,I。Mondragon,J。Rodriguez和C. Castiblanco,“地理映射和视觉缝制,以使用低成本无人机来支持地雷检测”,《国际早期机器人系统杂志》,第1卷。12,否。9,p。 125,2015。[在线]。可用:https://doi.org/10.5772/61236 [13] K. Kuru,D。Ansell,W。Khan,W。Khan和H. Yetgin,“分析和优化无人驾驶的物流群:智能交付平台:IEEE EEEE Access,第1卷。7,pp。15 804–31,2019。[14] K. Kuru,“使用新颖的框架计划智慧城市的未来,以完全自动的无人驾驶飞机进行,” IEEE Access,第1卷。9,pp。6571–6595,2021。[15] K. Kuru,D。Ansell,D。Jones,B。Watkinson,J。M. Pinder,J。A. Hill,E。Muzzall,C。Tinker-Mill,K。Stevens和A. Gardner,“使用自动驾驶无人驾驶航空车对牲畜进行智能的空降监测”,在第11届欧洲精密牲畜耕种会议上,2024年。[16] K. Kuru和H. Yetgin,“新工业革命中先进的机电一体化系统的转变:一切自动化(AOE)的新颖框架”,IEEE Access,第1卷。7,pp。41 395–41 415,2019。[17] K. Kuru,“地理分布的智能管理:在锻造云平台(FCP)上作为服务(DINSAA)的深入见解”,《平行与分布式计算》,第1卷。149,pp。103–118,3月2021。[18] L.-S. Yoo,J.-H。 Lee,Y.-K。 Lee,S.-K。 Jung和Y. Choi,“无人机磁力机系统在非军事区的军事矿山检测中的应用”,《传感器》,第1卷。21,否。9,2021。[在线]。可用:https://www.mdpi.com/1424-8220/21/9/3175 [19] L.-S. Yoo,J.-H。 Lee,S.-H。 KO,S.-K。 Jung,S.-H。李和Y.-K。 Lee,“装有磁力计的无人机检测地雷”,IEEE地球科学和遥感信件,第1卷。17,否。12,pp。2035–2039,2020。[20] Jirigalatu,V。Krishna,E。LimaSim〜oes Da Silva和A. Dossing,“使用混合无人驾驶飞机(UAV)(无人机)的可移植机载磁力测定系统的磁干扰实验”,《地球仪器仪器,方法,方法和数据系统》,第1卷。10,否。1,pp。25–34,2021。[在线]。10,否。1,pp。可用:https://gi.copernicus.org/articles/10/10/25/2021/ [21] L. E. Tuck,C。Samson,C。Lalibert´e和M. Cunningham,“磁干扰图映射四种无人飞机系统的无人飞机系统,用于空气磁性测量,地理位置仪器,”地理学仪器系统,”系统,数据,方法,方法,方法,方法,方法,方法,方法,方法,方法。101–112,2021。[在线]。可用:https://gi.copernicus.org/articles/10/10/101/2021/ [22] O. Maidanyk,Y。Meleshko和S. Shymko,“研究四倍体工位设计的影响及其在地面对象监控过程中的Quadrocopter Design及其对质量的质量的影响,“先进信息系统”,“先进信息系统”,第1卷。5,不。4,p。 64–69,2021年12月。[在线]。可用:http://dx.doi.org/10.20998/2522-9052.2021.4.4.4.10 [23] K. Kuru,“使用磁力计集成无人机和智能应用程序的地雷场磁场映射”,2024年。[在线]。可用:https://dx.doi.org/10.21227/ebny-b828 [24] K. Kuru,“元社会:使用智能城市数字双胞胎迈向沉浸式城市元网络,”,IEEE Access,第1卷。11,pp。43 844–68,2023。[25] K. Kuru和D. Ansell,“ Tcitysmartf:将城市转变为智能城市的全面系统框架”,IEEE Access,第1卷。8,pp。18 615–18 644,2020。[26] K. Kuru,D。Ansell,B。Jon Watkinson,D。Jones,A。Sujit,J。M. Pinder和C. L. Tinker-Mill,“智能自动化,快速,快速安全的地雷和未爆炸的军械法官(UXO)检测(UXO)检测,使用多个传感器进行衡量的仪器,在自动驾驶员上进行量子,iNemos and triment and trimose and imanee everrone and iever> ieee eyee eyee eyee eyee everient 9,pp。 923–948,2021。 transp。 Syst。,卷。9,pp。923–948,2021。transp。Syst。,卷。[27] K. Kuru和W. Khan,“一个与智能城市的完全自动地面车辆协同整合的框架”,IEEE Access,第1卷。[28] K. Kuru,“在城市环境中具有完全自动的自动驾驶汽车的人类触觉触觉近距离的概念化”,IEEE Open J. Intell。2,pp。448–69,2021。[29] K. Kuru,“自动驾驶和车辆决策的传感器和传感器融合”,2023年。[30] K. Kuru,“ Trustfsdv:建立和维持对自动驾驶汽车的信任的框架”,IEEE Access,第1卷。10,pp。82 814–82 833,2022。[31] K. Kuru,“对城市环境中自动驾驶汽车的多目标深钢筋学习奖励功能的定义”,IEEE Trans。车辆。Technol。,卷。11,pp。1-12,3月2024。
