最初的PMA(P170019)用于基础CDX于2017年11月30日批准,用于检测可能受益于非小细胞肺癌(NSCLC),黑色素瘤,乳腺癌,结婚癌症(CRC)和Ovarian Cancer的15种FDA批准疗法之一。随后,批准了九种PMA补充剂以扩大F1CDX的适应症,因为它是其最初批准的。PMA补充(P170019/S005)用于添加杂合性基因组损失(LOH)的PMA补充剂(P170019/S004)在2019年7月1日批准了BRCA1/2改变的卵巢癌患者中添加Lynparza®(Olaparib)指示的指示。PMA补充(P170019/S008)在NSCLC患者中添加Tagrisso®(Osimertinib)的指示EGFR EXON 19缺失和EGFR EXON 21 L858R变化的指示,于2019年7月1日获得批准。PMA补充剂(P170019/S006)在2019年12月3日批准了PIKRAY®(Alpelisib)对PIK3CA改变的乳腺癌患者的指示(Alpelisib)的指示。PMA补充(P170019/S010)在北卡罗来纳州莫里斯维尔添加第二个网站,该网站将于2019年12月16日批准。PMA补充(P170019/S013),用于在2020年4月17日批准使用FGFR2融合的胆管癌患者中添加Pemzyre®(Pemigatinib)的指示(pemigatinib)。PMA补充(P170019/S011)在NSCLC患者中添加了MET单核苷酸变体(SNV)和导致MET 14跳过的NSCLC患者中添加TabRecta®(Capmatinib)的指示。
(Olaparib片剂)是此设置(类别1)中的另一种“首选方案”。有一个脚注指出,对于BRCA 1/2突变的人,可以考虑使用PARP抑制剂,但是,可用证据表明,如果较早使用,则更有效。talzenna作为复发,不可切除或IV期HER2阳性疾病的单一药物,其BRCA1/2突变为第四线治疗及以后(2A类)。指南指出,尽管Talzenna和Lynparza是FDA批准用于HER2阴性疾病,但NCCN面板支持这些药物在与种系BRCA1/2突变相关的任何亚型中使用这些药物。对于具有生殖线BRCA 1/2突变的三重阴性乳腺癌,TALZENNA和LYNPARZA在一线环境中被列为“首选方案”,用于具有程序性细胞死亡配体1合并阳性分数(PD-L1 CPS)<10(类别1)的患者,以及在第二线环境(类别1)。•前列腺癌:NCCN指南(版本1.2025 - 2024年12月4日)建议Talzenna + Xtandi用于HRR突变(类别1)在MCRPC的一线环境中“在某些情况下有用”。对于先前的新型激素疗法和先前没有多西他赛治疗的患者,建议将talzenna + Xtandi用于HRR突变(2B类)“在某些情况下有用”。对于先前进行多西他赛治疗并且没有先前的新型激素治疗的患者,建议将Talzenna + Xtandi用于HRR突变(2A类)“在某些情况下有用”。P Olicy S Tatement建议先验授权以进行塔尔森纳的处方福利覆盖范围。在下面指出的持续时间内提供了所有批准。
卵巢癌死亡率居妇科恶性肿瘤之首(Li et al., 2019a,b),晚期卵巢癌五年生存率仅为20%-25%(Torre et al., 2015)。2018年,美国约有22,240例新发卵巢癌病例,其中半数以上患者死亡(Torre et al., 2018)。尽管手术联合化疗对卵巢癌有一定疗效,但50%的患者会出现复发并最终死于该恶性肿瘤(Liao et al., 2016)。化疗是临床治疗卵巢癌的关键,但化疗耐药性成为该疗法的主要障碍。因此,影响卵巢癌化疗疗效的因素目前已得到广泛研究和考虑(Bandera et al.,2015;Kanlikilicer et al.,2018;Zuo et al.,2020)。此外,分子靶向治疗多年来也得到了广泛的研究和应用,一些靶向药物如贝伐单抗、奥拉帕尼和尼拉帕尼已被证明可用于治疗卵巢癌(Tomao et al.,2013;Walsh,2018)。研究指出,化疗和分子靶向药物的疗效与卵巢癌中某些基因的表达密切相关(Shaw and Vanderhyden,2007;Li et al.,2019a,b;Hao et al.,2021),但关于这一现象的许多内容仍不清楚。
摘要:玛卡酰胺是从玛卡中提取的一类具有生物活性的天然产物,据报道,它对癌症有抑制作用。然而,它们在肺癌中的作用目前尚不清楚。在本研究中,玛卡酰胺B被证明能抑制肺癌细胞的增殖和侵袭,这分别通过细胞计数试剂盒-8和Transwell测定确定。相反,玛卡酰胺B诱导细胞凋亡,经Annexin V-FITC测定确定。此外,玛卡酰胺B和聚(ADP-核糖)聚合酶抑制剂奥拉帕尼联合治疗进一步抑制了肺癌细胞的增殖。在分子水平上,经蛋白质印迹法测定,玛卡酰胺B显著增加了毛细血管扩张性共济失调突变(ATM)、RAD51、p53和裂解胱天蛋白酶-3的表达,而Bcl-2的表达水平降低。相反,当用小干扰RNA技术敲低ATM表达时,在用玛咖酰胺B处理的A549细胞中,ATM、RAD51、p53和cleaved caspase-3的表达水平降低,而Bcl-2的表达水平升高。一致地,ATM敲低部分挽救了细胞增殖和侵袭能力。总之,玛咖酰胺B通过抑制细胞增殖和侵袭,诱导细胞凋亡来抑制肺癌进展。此外,玛咖酰胺B可能参与调控ATM信号通路。本研究为治疗肺癌患者提供了一种潜在的新型天然药物。
癌症中的凋亡允许肿瘤细胞生存并繁殖,并导致肿瘤进展和耐药性。相反,Parthanatos是由聚(ADP-核糖)聚合酶1(PARP1)过度激活,诱导凋亡诱导因子(AIF)易位的caspase非代谢崩溃的,以及综合DNA损伤。几种癌症模型涉及parthanatos。脱氧噬菌体毒素(DPT)通过过量的ROS产生,PARP1上调和AIF核易位诱导神经胶质瘤细胞中的parthanatos。像急性髓样白血病(AML)一样,大麻素衍生物Win-55触发了Parthanatos,并且诸如Olaparib等PARP抑制剂可以逆转效果。制定涉及高级癌症治疗策略的癌症治疗策略取决于凋亡与帕氏症之间的相互作用。然而,这种基于凋亡的癌症疗法倾向于发展抗药性,因此迫切需要研究诸如parthanatos之类的替代途径,帕氏症(Parthanatos)可能并不总是触发凋亡。在克服凋亡耐药性时,有证据表明,将凋亡诱导剂(例如BH3 Mimetics)与PARP抑制剂结合起来可以协同增强细胞死亡。氧化应激调节剂可促进骨par骨和凋亡路径的执行并允许治疗。在这篇综述中,讨论了与癌症治疗潜力有关的凋亡和parthanatos在分子水平上进行彻底比较。关键字:parthanatos,凋亡,癌症,细胞死亡机制,PARP1,胱天蛋白酶,耐药性我们纳入了最新发现,以证明帕氏症不仅可以通过帕氏症和凋亡的结合使用来管理治疗耐药性,并增强癌症治疗,而且还可以对长期循环的癌症干细胞治疗多种形式的转移性癌症来使用免疫力和骨沉积。
PARP-1蛋白通过将XRCC1募集到修饰的DNA位置来参与单链断裂修复。当抑制PARP时,细胞依赖其他DNA修复机制,尤其是同源重组,以正确复制基因组信息,而无需进行致命性有丝线的风险。在具有同源重新组合的细胞中,例如BRCA1-或BRCA2突变的细胞,PARP抑制是致命的[1,2]。在2005年提供了这些描述后,合成致死性的概念出现,而PARP抑制剂(PARPI)的开发是为了治疗BRCA-Muthated患者,在该患者中,非癌细胞具有一个野生型等位基因,而癌细胞则是BRCA的定义,因此是特异性敏感的,因此具有特异性敏感性。几个PARPI已在临床上进行了研究,可用于治疗癌症患者(Olaparib,Rucaparib,Talazoparib,Niraparib和Veliparib(ABT-888))。有关PARPI的科学文献非常丰富(自2005年以来> 12,000篇论文),研究论文,临床试验和评论涉及有关作用机理,抗药性,临床活动以及新化合物的发展。最初认为PARPI的作用机理是对PARP1相关的单链破裂修复的“简单”抑制作用,随后出现更具毒性和更容易恢复的双链断裂。然而,真理要复杂得多,正如T. Helleday [3]已经讨论的那样,自从该出版物[4]开始。关于Parpi的许多知识仍然未知,它们的临床可能比今天所描述的要强。基于这些知识的工作促进了与PARPI活性和耐药机制有关的其他蛋白质的鉴定,并有助于发展与其他DNA相关蛋白(如RAD51 [5]和EZH2 [6]的药理抑制其他与DNA相关蛋白的相关策略[6]。特别是其他DNA修复的可能参与
摘要:聚(ADP-核糖)聚合酶 (PARP) 近来已成为癌症抵抗多种抗癌剂(包括微管靶向剂和 DNA 损伤剂等化疗剂)的中心介质。本文介绍了 AMXI-5001,这是一种新型、高效双重 PARP1/2 和微管聚合抑制剂,具有良好的代谢稳定性、口服生物利用度和药代动力学特性。通过生化分析确定了 AMXI-5001 的效力和选择性。体外评估了作为单一药物或与其他抗肿瘤药物联合使用的抗癌活性。在三阴性乳腺癌 (TNBC) 模型中评估了作为单一药物的体内抗肿瘤活性。AMXI-5001 对 PARP 和微管聚合的 IC50 抑制作用与临床 PARP 抑制剂(Olaparib、Rucaparib、Niraparib 和 Talazoparib)和强效聚合抑制剂(Vinblastine)相当。在体外,AMXI-5001 对多种人类癌细胞表现出选择性抗肿瘤细胞毒性,IC50 比现有的临床 PARP1/2 抑制剂低得多。AMXI-5001 在 BRCA 突变型和野生型癌症中均具有高度活性。AMXI-5001 可口服生物利用。AMXI-5001 在 BRCA 突变型 TNBC 模型中表现出显著的体内临床前抗肿瘤活性。口服 AMXI-5001 可诱导已建立的肿瘤完全消退,包括非常大的肿瘤。与单一药物(PARP 或微管)抑制剂或两种药物的组合相比,AMXI-5001 具有更优异的抗肿瘤效果。AMXI-5001 将很快进入临床试验测试,它代表了一种有前途的、新颖的同类首创的双重 PARP1/2 和微管聚合抑制剂,可通过一个分子提供连续和同步的一二连击癌症治疗。
摘要 背景 对免疫检查点抑制剂 (ICI) 的耐药性显著限制了肝细胞癌 (HCC) 患者免疫治疗的疗效。然而,免疫治疗耐药性的机制仍然不太清楚。我们的目的是在抗程序性细胞死亡蛋白 1 (PD-1) 治疗框架内阐明膜相关环 CH 型指 3 (MARCHF3) 在 HCC 中的作用。 方法 在对 ICI 表现出不同反应的 HCC 肿瘤的转录组谱中鉴定出 MARCHF3。在人类中,通过多重免疫组织化学评估 MARCHF3 表达与肿瘤微环境 (TME) 之间的相关性。此外,通过流式细胞术评估了肿瘤细胞中的 MARCHF3 表达和免疫细胞浸润。 结果 在对 ICI 有反应的患者的肿瘤中,MARCHF3 显著上调。HCC 细胞中 MARCHF3 表达的增加促进了树突状细胞 (DC) 成熟并刺激 CD8 + T 细胞活化,从而增强了肿瘤控制。从机制上看,我们确定 MARCHF3 是 DNA 损伤反应的关键调节因子。它通过 K48 连接的泛素化直接与聚(ADP-核糖)聚合酶 1 (PARP1) 相互作用,导致 PARP1 降解。该过程促进双链 DNA 的释放并激活 DC 中的 cCAS-STING,从而启动 DC 介导的抗原交叉呈递和 CD8 + T 细胞活化。此外,ATF4 转录调控 MARCHF3 表达。值得注意的是,PARP1 抑制剂奥拉帕尼增强了抗 PD-1 免疫疗法在皮下和原位 HCC 小鼠模型中的疗效。结论 MARCHF3 已成为 HCC TME 中免疫景观的关键调节因子,并且是 HCC 的有力预测生物标志物。将针对 DNA 损伤反应的干预措施与 ICI 相结合是一种有前途的 HCC 治疗策略。
单一疗法用于治疗某些患有宫颈癌、经典霍奇金淋巴瘤 (cHL)、皮肤鳞状细胞癌 (cSCC)、食管或胃食管连接部 (GEJ) 癌、头颈部鳞状细胞癌 (HNSCC)、肝细胞癌 (HCC)、非小细胞肺癌 (NSCLC)、黑色素瘤、默克尔细胞癌、微卫星不稳定性高 (MSI-H) 或错配修复缺陷 (dMMR) 癌症(实体瘤)的患者,包括 MSI-H/dMMR 结直肠癌 (CRC)、原发性纵隔大B细胞淋巴瘤 (PMBCL)、肿瘤突变负担高 (TMB-H) 癌症(实体瘤)和尿路上皮癌,包括非肌层浸润性膀胱癌。 Keytruda 还被批准用于治疗某些患者,与化疗联合用于治疗转移性鳞状和非鳞状 NSCLC,与化疗联合用于治疗 HNSCC,与曲妥珠单抗、含氟嘧啶和铂类化疗联合用于治疗人表皮生长因子 2 (HER2) 阳性胃腺癌或 GEJ 腺癌,与铂类和氟嘧啶类化疗联合用于治疗食管癌或 GEJ 癌,与化疗联合(联合或不联合贝伐单抗)用于治疗宫颈癌,与化疗联合用于治疗三阴性乳腺癌 (TNBC),与阿昔替尼联合用于治疗晚期肾细胞癌 (RCC),与仑伐替尼联合用于治疗子宫内膜癌或 RCC。Keytruda 还被批准用于某些高风险患者
摘要:三阴性乳腺癌 (TNBC) 细胞缺乏雌激素受体 (ER)、孕激素受体 (PR) 和人表皮生长因子受体 2 (HER2),约占所有乳腺癌的 10–15%。TNBC 具有高度侵袭性,生长速度更快,转移和复发的风险更高。尽管如此,化疗仍然是治疗 TNBC 的广泛使用的方法之一。本研究回顾了 TNBC 亚型的组织学和分子特征、异常表达的信号通路以及针对这些通路的小分子,无论是单独使用还是与其他治疗药物(如化疗药物、免疫疗法和抗体-药物偶联物)联合使用;还回顾了它们的作用机制、挑战和未来前景。使用从 SciFinder、PubMed、ScienceDirect、Google Scholar、ACS、Springer 和 Wiley 数据库收集的文献进行了详细的分析性审查。发现几种小分子抑制剂可用于治疗 TNBC。研究了小分子发挥作用的作用机制和不同信号通路,包括临床试验(如果报告)。这些小分子抑制剂包括布帕利西布、依维莫司、凡德他尼、阿帕替尼、奥拉帕尼、红景天苷等。讨论了一些与 TNBC 有关的信号通路,包括 VEGF、PARP、STAT3、MAPK、EGFR、P13K 和 SRC 通路。由于缺乏这些生物标志物,治疗 TNBC 的药物开发具有挑战性,化疗是主要的治疗剂。然而,化疗与化学耐药性和对健康细胞的高毒性等副作用有关。因此,对专门针对 TNBC 中异常表达的几种信号通路的小分子抑制剂的需求持续存在。我们试图涵盖该领域的所有最新进展。任何遗漏都是无意的。