Piégay Hervé(Orcid ID:0000-0002-3864-2119) Arnaud Fanny(Orcid ID:0000-0002-8784-1384) Belletti Barbara(Orcid ID:0000-0002-6247-7619) Bertrand Mélanie(Orcid ID:0000-0003-1921-8811) Bizzi Simone(Orcid ID:0000-0002-0588-826X) Carbonneau Patrice(Orcid ID:0000-0001-8246-9491) 人类世遥感河流:现状与前景 标题:河流遥感 H. Piégay 1,F. Arnaud 1 , B. Belletti 2 , M. Bertrand 3 , S. Bizzi 4 , P. Carbonneau 5 , S. Dufour 6 , F. Liebault 3 , V. Ruiz-Villanueva 1, 7 , L. Slater 8 1 里昂大学, UMR 5600 CNRS EVS, 里昂高等师范学院, 15 Parvis René Descartes,F- 69342 里昂,法国 2 米兰理工大学电子、信息和生物工程系,Piazza Leonardo da Vinci 32, 20133 米兰,意大利 3 格勒诺布尔阿尔卑斯大学,Irstea,ETNA,F-38 000 格勒诺布尔,法国。 4 帕多瓦大学地球科学系,意大利帕多瓦。 5 杜伦大学,地理系,杜伦,英国,DH1 3LE 6 雷恩第二大学,CNRS UMR LETG,Place Le Moal,F-35000,雷恩,法国
Sofema Online (SOL) 是一个基于网络的在线培训平台,专注于提供航空领域的高质量在线监管和职业课程,符合 EASA、FAA 和其他监管环境的范围,以及额外的能力建设课程,以便在适用监管环境范围内提供职业培训。
在“工业 4.0”概念下,生产流程将变得越来越互联,信息以实时为基础,而且必然更加高效。在此背景下,产能优化超越了传统的产能最大化目标,也为组织的盈利能力和价值做出了贡献。事实上,精益管理和持续改进方法建议进行产能优化而不是最大化。产能优化和成本模型的研究是一个重要的研究课题,值得从实践和理论角度做出贡献。本文提出并讨论了基于不同成本模型(ABC 和 TDABC)的产能管理数学模型。已经开发了一个通用模型,并用于分析闲置产能并设计实现组织价值最大化的策略。强调了产能最大化与运营效率之间的权衡,并表明产能优化可能会隐藏运营效率低下的问题。© 2017 作者。由 Elsevier B.V. 出版。同行评审由 2017 年制造工程学会国际会议科学委员会负责。
为了控制和预防影响动物种群的各种传染病,接种疫苗是一种简单有效的解决方案。山羊种群深受严重的呼吸道疾病传染性山羊胸膜肺炎 (CCPP) 的困扰。作为一种高度传染性的疾病,CCPP 的控制是该国关注的重点。在本研究中,从 Mccp 当地菌株分离株中开发并评估了一种灭活的全细胞 (WC) CCPP 疫苗。通过 PCR 证实分离株含有 0.15 mg/mL 的蛋白质,并以 3.0 mg/mL 的剂量用皂苷灭活。灭活皂化 WC-CCPP 疫苗和市售的 Pulmovac CCPP 疫苗 (Türkiye) 接种在实验山羊身上进行评估和比较。本次试验共使用 30 只山羊,其中 24 只山羊随机分为三组,接种灭活 WC CCPP 疫苗、Pulmovac CCPP 疫苗和无菌 PBS 作为阴性对照。安全性试验中,接种后山羊无发热、无病理改变,健康状态良好。第49天,接种普莫瓦克CCPP活疫苗的山羊平均抑制率(84.768%)高于接种WC CCPP灭活疫苗的山羊(79.604)。接种后90天用cELISA测定抗体滴度。接种皂化Mcp疫苗和普莫瓦克CCPP疫苗的山羊抗体滴度均有所增加,并在第7周达到最高水平,几何平均滴度(GMT)分别为169.24和177.3。接种三个月后再进行攻击的山羊对感染有抵抗力,而两只未接种疫苗的山羊死于CCPP。经过六个月的攻击,A 组中的一只山羊和 B 组中的两只山羊出现了 CCPP 症状,而对照组中的一只山羊死于 CCPP。这些发现表明,山羊每年需要注射两剂灭活 WC CCPP 疫苗,因为它可以提供六个月的 CCPP 免疫力。
SI1 电力代码........................................................................................................................................................................................................................................................................................................................SI-3 SI2 运输代码....................................................................................................................................................................................................................................................................................................................SI-4 SI3 表 3 的长版本....................................................................................................................................................................................................................................................................................................SI-4 SI3 表 3 的长版本.................................................................................................................................................................................................................................................................................................................... SI-7 SI4 与表 3 类似,但对 AI 有更多规范 . . . . . . . . . . . . . . . SI-8 SI5 与表 3 类似,但对 ICT 有更多规范 . . . . . . . . . . . . . . SI-8 SI6 与表 3 类似,但仅适用于运输家庭 . . . . . . . . . . . . . . . SI-9 SI7 与表 3 类似,但仅适用于电力家庭 . . . . . . . . . . . . . . . SI-10 SI8 与表 3 类似,但使用对 AI 和 ICT 的引用计数 . . . . . . . . . . . . . . SI-11 SI9 表 4 的长版本 . . . . . . . . . . . . . . . . . . . . . . . SI-12 SI10 与表 4 类似,使用 5 年内的引用作为结果 . . . . . . . . . . . . . SI-13 SI11 表 6 的长版本 . . . . . . . . . . . . . . . . . . . . . . . . SI-15 SI12 与表 6 类似,但对运输领域的 AI 有更多规范 . . . . . . . . . SI-16 SI13 与表 6 类似,但对电力领域的 AI 有更多规范 . . . . . . . . . SI-17 SI14 与表 6 类似,但对运输领域的 ICT 有更多规范 . . . . . . . . SI-18 SI15 与表 6 类似,但对电力领域的 ICT 有更多规范 . . . . . . . . . SI-19 SI16 与表 7 类似,但不包含能源存量,但对 AI 有更多规范 . . . . . SI-20 SI17 与表 7 类似,但不包含能源存量,但对 ICT 有更多规范 . . . . . SI-21 SI18 与表 7 类似,但包含更多 AI 规范 . . . . . . . . . . . . . . . . SI-22 SI19 与表 7 类似,但包含更多 ICT 规范 . . . . . . . . . . . . . . SI-23 SI20 与 SI18 类似,控制部门/清洁/灰色焦点(运输) . . . . . . . SI-24 SI21 与 SI18 类似,控制部门/清洁/灰色焦点(电力) . . . . . . . . SI-25 SI22 与 SI18 类似,控制部门/清洁/灰色焦点(运输) . . . . . . . SI-26 SI23 电力:与 SI18 类似,控制行业/清洁/灰色焦点(电力)SI-27
术语 缩写 AC 吸收式制冷机 ACS 吸收式制冷系统 AMIS® 汞和硫化氢减排(意大利语) BTES 钻孔热能存储 CCS 碳捕获和存储 EES 工程方程求解器 ESS 能量存储系统 ETSC 真空管太阳能集热器 FPSC 平板太阳能集热器 GE 地热能 GHE 地热交换器 GIS 地理信息系统 GPP 地热发电厂 GSHP 地源热泵 HOMER 电力可再生能源混合优化模型 HP 热泵 KC 卡林纳循环 LNG 液化天然气 MGS 多联产系统 NCG 不凝性气体 ORC 有机朗肯循环 ORFC 有机朗肯闪蒸循环 PEM 质子交换膜 PTSC 槽式太阳能集热器 PV 光伏 RC 朗肯循环 RES 可再生能源 RO 反渗透 RTV 朗肯槽式蒸汽 SC 太阳能集热器 VAC 蒸汽吸收循环 VTR 蒸汽槽式朗肯 下标
根据WHO建立的全球抗菌耐药行动计划,目的是获得比传统抗生素更有效的更好治疗剂,我们评估了两种含有磷酸盐的合成有机化合物的抗菌活性,即((((((氰基甲基)(乙氧基)磷酸))氧)锌(II)氯化物(化合物I)和(Z)和(Z) - (1-(1-(3-(3-(二氯磷)-3-甲基-4-4-氧气)-2-甲基-4-氧乙烯 - 2-2-2-2-2-2-乙基)乙基)乙基二氯酸磷酸二氯化物(复合II),包括十字级传播剂,涉及杂种。 Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginisa ), three Gram-positive bacteria ( Bacillus mesentericus, Bacillus subtilis and Staphylococcus aureus ) and three yeasts ( Candida albicans, Candida guilliermondii and Candida tropicalis ).琼脂井扩散方法被应用于抑制的估计区域,并使用化合物的双稀释方法来确定两种测试化合物的最小抑制浓度(MIC)。获得的结果表明,化合物对化合物I的抑制区域具有出色的抗菌潜力,对于革兰氏阴性和革兰氏阳性细菌,化合物I的抑制区域范围从34.2 mm至39.3 mm,从35.5 mm到41.2 mm。化合物I的抗真菌活性抑制区域的抑制区域从26.3 mm至28.0 mm不等,对于念珠菌物种,化合物II的抑制区域从30.3 mm到31.0 mm。MIC值表明,与革兰氏阴性菌和革兰氏阳性细菌相比,念珠菌属对两种测试化合物非常敏感。疾病是全球死亡的主要原因之一(WHO,2017年),每年大约有70万人因耐药感染而死亡(Francesca等,2015)。受抗菌抗性病原体感染的人会受到免疫系统的损害,并且可能在短时间内和短时间内发生死亡(Michele等,2015)。除了这些令人震惊的健康后果,耐药性具有重大的经济影响(WHO,2017年)。的确,抗菌抵抗造成的经济负担将在2050年达到1亿美元(Michele等,2015; O'Neill,2016)。如果没有采取任何措施来控制这一全球公共卫生祸害(Renzo and Maurizio,2020;
酒糟具有丰富的纤维、蛋白质和维生素,主要用来喂养反刍动物以供维持和生产。本研究旨在研究氯化铵对五粮液和茅台酒糟发酵品质和微生物动态的影响。用0.3% N 氯化铵处理两种酒糟,并于青贮后第 3、7、14、30 和 60 天取样。采用 HPLC 和 16s rRNA 平台测定挥发性脂肪酸 (VFA) 含量和微生物组成。本研究结果表明,氯化铵分别在 14 天和 30 天增加了五粮液和茅台酒糟的乳酸产量并降低了铵态氮水平。两种酒糟中的乙酸和丙酸随时间延长而增加。此外,氯化铵降低了微生物的 α 逆境,如观察到的种类和 Shannon 指数;乳酸杆菌的丰度增加,醋酸杆菌的丰度降低;氯化铵可以作为一种有效的DGS防腐剂,但不同的DGS达到稳定期的时间不同。
我们的使命是通过研究和分析帮助改善政策和决策,这得益于我们的核心价值观:质量和客观性,以及我们对最高诚信和道德行为的坚定承诺。为确保我们的研究和分析严谨、客观、不偏不倚,我们对研究出版物进行了严格而严格的质量保证流程;通过员工培训、项目筛选和强制披露政策,避免出现财务和其他利益冲突的表象和现实;并通过我们致力于公开发表研究结果和建议、披露已发表研究的资金来源以及确保知识独立的政策,追求研究工作的透明度。有关更多信息,请访问 www.rand.org/about/principles。