1 1,德克萨斯州休斯顿市德克萨斯大学安德森癌症中心,德克萨斯州休斯敦2 Feinberg医学院和凯洛格管理学院,西北大学,芝加哥,伊利诺伊州芝加哥,伊利诺伊州芝加哥3牵引力平台,治疗平台,Therapeutics Discovery Discoveript德克萨斯州休斯顿5号转化分子病理系,谢赫·艾哈迈德胰腺癌研究中心,德克萨斯大学医学博士学位安德森癌症中心,德克萨斯州休斯敦,6 6突破癌症,马萨诸塞州剑桥,马萨诸塞州剑桥,分子和蜂窝肿瘤学系,德克萨斯大学MD Anderson Center of Tex 7德克萨斯州休斯顿市贝勒医学院 *联合首先作者#共同对应作者:Raghu Kalluri,医学博士,博士电子邮件:rkalluri@mdanderson.org Timothy P. Heffernan,博士电子邮件:1,德克萨斯州休斯顿市德克萨斯大学安德森癌症中心,德克萨斯州休斯敦2 Feinberg医学院和凯洛格管理学院,西北大学,芝加哥,伊利诺伊州芝加哥,伊利诺伊州芝加哥3牵引力平台,治疗平台,Therapeutics Discovery Discoveript德克萨斯州休斯顿5号转化分子病理系,谢赫·艾哈迈德胰腺癌研究中心,德克萨斯大学医学博士学位安德森癌症中心,德克萨斯州休斯敦,6 6突破癌症,马萨诸塞州剑桥,马萨诸塞州剑桥,分子和蜂窝肿瘤学系,德克萨斯大学MD Anderson Center of Tex 7德克萨斯州休斯顿市贝勒医学院 *联合首先作者#共同对应作者:Raghu Kalluri,医学博士,博士电子邮件:rkalluri@mdanderson.org Timothy P. Heffernan,博士电子邮件:1,德克萨斯州休斯顿市德克萨斯大学安德森癌症中心,德克萨斯州休斯敦2 Feinberg医学院和凯洛格管理学院,西北大学,芝加哥,伊利诺伊州芝加哥,伊利诺伊州芝加哥3牵引力平台,治疗平台,Therapeutics Discovery Discoveript德克萨斯州休斯顿5号转化分子病理系,谢赫·艾哈迈德胰腺癌研究中心,德克萨斯大学医学博士学位安德森癌症中心,德克萨斯州休斯敦,6 6突破癌症,马萨诸塞州剑桥,马萨诸塞州剑桥,分子和蜂窝肿瘤学系,德克萨斯大学MD Anderson Center of Tex 7德克萨斯州休斯顿市贝勒医学院 *联合首先作者#共同对应作者:Raghu Kalluri,医学博士,博士电子邮件:rkalluri@mdanderson.org Timothy P. Heffernan,博士电子邮件:1,德克萨斯州休斯顿市德克萨斯大学安德森癌症中心,德克萨斯州休斯敦2 Feinberg医学院和凯洛格管理学院,西北大学,芝加哥,伊利诺伊州芝加哥,伊利诺伊州芝加哥3牵引力平台,治疗平台,Therapeutics Discovery Discoveript德克萨斯州休斯顿5号转化分子病理系,谢赫·艾哈迈德胰腺癌研究中心,德克萨斯大学医学博士学位安德森癌症中心,德克萨斯州休斯敦,6 6突破癌症,马萨诸塞州剑桥,马萨诸塞州剑桥,分子和蜂窝肿瘤学系,德克萨斯大学MD Anderson Center of Tex 7德克萨斯州休斯顿市贝勒医学院 *联合首先作者#共同对应作者:Raghu Kalluri,医学博士,博士电子邮件:rkalluri@mdanderson.org Timothy P. Heffernan,博士电子邮件:1,德克萨斯州休斯顿市德克萨斯大学安德森癌症中心,德克萨斯州休斯敦2 Feinberg医学院和凯洛格管理学院,西北大学,芝加哥,伊利诺伊州芝加哥,伊利诺伊州芝加哥3牵引力平台,治疗平台,Therapeutics Discovery Discoveript德克萨斯州休斯顿5号转化分子病理系,谢赫·艾哈迈德胰腺癌研究中心,德克萨斯大学医学博士学位安德森癌症中心,德克萨斯州休斯敦,6 6突破癌症,马萨诸塞州剑桥,马萨诸塞州剑桥,分子和蜂窝肿瘤学系,德克萨斯大学MD Anderson Center of Tex 7德克萨斯州休斯顿市贝勒医学院 *联合首先作者#共同对应作者:Raghu Kalluri,医学博士,博士电子邮件:rkalluri@mdanderson.org Timothy P. Heffernan,博士电子邮件:1,德克萨斯州休斯顿市德克萨斯大学安德森癌症中心,德克萨斯州休斯敦2 Feinberg医学院和凯洛格管理学院,西北大学,芝加哥,伊利诺伊州芝加哥,伊利诺伊州芝加哥3牵引力平台,治疗平台,Therapeutics Discovery Discoveript德克萨斯州休斯顿5号转化分子病理系,谢赫·艾哈迈德胰腺癌研究中心,德克萨斯大学医学博士学位安德森癌症中心,德克萨斯州休斯敦,6 6突破癌症,马萨诸塞州剑桥,马萨诸塞州剑桥,分子和蜂窝肿瘤学系,德克萨斯大学MD Anderson Center of Tex 7德克萨斯州休斯顿市贝勒医学院 *联合首先作者#共同对应作者:Raghu Kalluri,医学博士,博士电子邮件:rkalluri@mdanderson.org Timothy P. Heffernan,博士电子邮件:1,德克萨斯州休斯顿市德克萨斯大学安德森癌症中心,德克萨斯州休斯敦2 Feinberg医学院和凯洛格管理学院,西北大学,芝加哥,伊利诺伊州芝加哥,伊利诺伊州芝加哥3牵引力平台,治疗平台,Therapeutics Discovery Discoveript德克萨斯州休斯顿5号转化分子病理系,谢赫·艾哈迈德胰腺癌研究中心,德克萨斯大学医学博士学位安德森癌症中心,德克萨斯州休斯敦,6 6突破癌症,马萨诸塞州剑桥,马萨诸塞州剑桥,分子和蜂窝肿瘤学系,德克萨斯大学MD Anderson Center of Tex 7德克萨斯州休斯顿市贝勒医学院 *联合首先作者#共同对应作者:Raghu Kalluri,医学博士,博士电子邮件:rkalluri@mdanderson.org Timothy P. Heffernan,博士电子邮件:1,德克萨斯州休斯顿市德克萨斯大学安德森癌症中心,德克萨斯州休斯敦2 Feinberg医学院和凯洛格管理学院,西北大学,芝加哥,伊利诺伊州芝加哥,伊利诺伊州芝加哥3牵引力平台,治疗平台,Therapeutics Discovery Discoveript德克萨斯州休斯顿5号转化分子病理系,谢赫·艾哈迈德胰腺癌研究中心,德克萨斯大学医学博士学位安德森癌症中心,德克萨斯州休斯敦,6 6突破癌症,马萨诸塞州剑桥,马萨诸塞州剑桥,分子和蜂窝肿瘤学系,德克萨斯大学MD Anderson Center of Tex 7德克萨斯州休斯顿市贝勒医学院 *联合首先作者#共同对应作者:Raghu Kalluri,医学博士,博士电子邮件:rkalluri@mdanderson.org Timothy P. Heffernan,博士电子邮件:
靶向疗法后BRAF突变的黑色素瘤复发是一种侵略性疾病,临床需求未满足。因此,需要确定能够克服耐药性的新型组合疗法。miRNA已成为黑色素瘤细胞采用的非遗传机制的编排,以挑战疗法。在这种情况下,我们先前识别出在耐药性黑色素瘤中下调的Oncosuppressor miRNA的子集。在这里,我们证明了脂质纳米颗粒共同包裹其中两个,即miR-199-5p和miR-204-5p,在体外和体内都抑制肿瘤的生长,并结合靶疗法,并阻止耐药性的发展。从机械上讲,它们通过直接降低黑色素瘤细胞生长并间接地通过阻碍促肿瘤巨噬细胞的募集和重新编程而起作用。分子,我们证明了对巨噬细胞的影响是通过新鉴定的miR-204-5p-MIR-199B-5P-5P/CCL5轴的失调介导的。最后,我们揭示了M2巨噬细胞计划是耐药性的分子特征,并预测了患者对治疗的反应。总体而言,这些发现具有强烈的翻译意义,以提出用于使用RNA疗法用于转移性黑色素瘤患者的新组合疗法。
通讯作者: 程伟,医学博士,湖南省人民医院肝胆外科,湖南师范大学第一附属医院,湖南省长沙 410005。湖南省寄生虫病研究所附属湘岳医院,国家血吸虫病临床治疗中心,湖南省岳阳 414000。湖南师范大学胰腺疾病转化医学实验室,长沙 410005。电子邮箱:chengwei@hunnu.edu.cn。 陈康,博士,湖南省人民医院肝胆外科,湖南师范大学第一附属医院,湖南省长沙 410005。湖南师范大学胰腺疾病转化医学实验室,长沙 410005。电子邮箱:chenkang1029@foxmail.com。
人乳头瘤病毒 (HPV) 感染是多种人类癌症的病原体,包括宫颈癌和头颈癌。在这些 HPV 阳性肿瘤中,体细胞突变是由 DNA 突变因子的异常激活引起的,例如载脂蛋白 B 信使 RNA 编辑酶催化多肽样 3 (APOBEC3) 胞苷脱氨酶家族的成员。APOBEC3 蛋白最为显著的特点是能够限制各种病毒,包括抗 HPV 活性。然而,APOBEC3 蛋白在 HPV 诱发的癌症进展中的潜在作用最近引起了广泛关注。正在进行的研究源于以下观察结果:APOBEC3 表达升高是由 HPV 致癌基因表达驱动的,并且 APOBEC3 活性可能是 HPV 阳性癌症中体细胞诱变的重要因素。本综述重点介绍 APOBEC3 蛋白及其在 HPV 感染和 HPV 驱动的致癌作用方面的最新研究进展。此外,我们还讨论了我们在理解 APOBEC3 在病毒相关癌症中的作用方面存在的关键差距和未解答的问题。
摘要:神经母细胞瘤 (NB) 是儿童和婴儿期最常见的神经源性颅外实体癌症之一。多年来,许多证据表明 NB 的发展受基因表达失调控制。这些定义 NB 癌细胞的释放程序使它们高度依赖于基因表达的特定调节,这些调节可以协同作用以确定分化状态、细胞身份和特殊功能。这种特殊的调节主要是由遗传和表观遗传改变引起的,导致依赖一小组关键的主转录调节因子作为多种信号通路的汇聚点。在这篇综述中,我们提供了与 NB 启动和进展有关的转录调控的综合蓝图,揭示了这种病理学中新的致癌和肿瘤抑制调节网络的复杂性。此外,我们强调了针对这些特征的多靶点疗法的重要性,展示了新方法与化疗、手术或放疗相结合如何产生显著的抗肿瘤作用,通过不同治疗方法的组合破坏多种致瘤途径。
简单总结:v-Ki-ras2 Kirsten 大鼠肉瘤病毒致癌基因 ( KRAS ) 是 NSCLC 中最常见的驱动因素,靶向致癌 KRAS 是治疗非小细胞肺癌 (NSCLC) 的一大挑战。虽然几种共价 KRAS G12C 抑制剂已成为新型抗 KRAS 疗法,但鉴于 KRAS 突变肿瘤的巨大异质性,仍然需要开发涉及靶向致癌 KRAS 加上其他靶向药物的联合疗法。在这篇综述中,我们总结了致癌 KRAS 驱动的 NSCLC 的生物学和免疫学特征以及突变 KRAS 靶向治疗的临床前和临床证据。我们还讨论了对 KRAS G12C 抑制剂的耐药机制以及克服这种耐药性的可能治疗策略。
摘要:对治疗的耐药性仍然是黑色素瘤治愈性治疗的一大障碍。最近来自临床和实验环境的见解强调了一系列导致治疗耐药性和疾病复发的非遗传适应机制,包括转录、转录后和代谢重编程。越来越多的证据强调了黑色素瘤代谢的固有可塑性,证据是转移和对抗癌治疗反应过程中发生的可逆代谢组改变和燃料使用的灵活性。在这里,我们讨论了黑色素瘤细胞固有的代谢可塑性如何促进疾病进展和获得抗癌治疗耐药性。特别是,我们详细讨论了靶向治疗反应的三个主要阶段(早期反应、药物耐受性和获得性耐药性)中发生的不同代谢变化。我们还讨论了非遗传程序(包括转录和翻译)如何控制这一过程。这些非遗传抗药性机制的普遍性和多样性对该领域提出了新的挑战,需要创新策略来监测和抵消这些适应性过程,以防止治疗耐药性。
纤溶酶原途径通过纤维蛋白溶解调节ECM结构的稳态。纤溶酶原通过纤溶酶原激活剂(PAS)转化为纤溶酶:在各种组织中组织型PA(TPA)和尿激酶型PA(UPA),导致蛋白水解。纤溶酶原激活剂抑制剂1(PAI-1)是纤溶酶原途径的主要调节剂,参与调节TPA/ UPA活性(图1A)。pai-1是丝氨酸蛋白酶抑制剂基因家族的成员,主要由内皮产生,并在各种细胞类型上表达,例如脂肪细胞,巨噬细胞,心肌细胞和成纤维细胞。pai-1基因表达受许多转录因子和细胞类型的影响,并受细胞因子和生长因子的密切调节,包括转化生长因子-β(TGF-β),白介素1β(IL-1β),表皮生长因子(EGF)和胰岛素。具体而言,受伤的细胞会响应各种损害
结果:我们的研究发现,具有同时发生作用改变的NSCLC患者的频率约为1.5%(46/3077);在排除了EGFR非确定突变的患者之后,发病率为1.3%(40/3077); 80%(37/46)携带EGFR突变和其他潜在可行的驱动因素,例如MET放大器(21.6%; 8/37)以及ERBB2的变化,包括突变(27%; 10/37)和放大(21.6%; 8/37; 8/37; 8/37; 8/37);还鉴定了其他潜在可行的驱动因素的组合,包括ERBB2,KRAS,MET,ALK和RET的改变。此外,具有第一代EGFR EGFR EGFR酪氨酸激酶抑制剂(TKIS)治疗的EGFR-突变NSCLC的患者中,从头MET / ERBB2放大器与较短的PFS相关(p <0.05)。TKI的效率在具有其他分子亚型的NSCLC患者中具有其他可能可行的驱动因素而变化。
简介:头部和颈部鳞状细胞癌(HNSCC)的特征是复发的发生率很高,这是HNSCC患者死亡的常见原因。识别支持HNSCC疾病管理的生物标志物在临床肿瘤学中仍然是未满足的需求。Meetials和方法:为此,我们为下一代测序(NGS)分析设计了一个突变芯片,以检测HNSCC患者的肿瘤组织中的突变和匹配的血浆。对HNSCC TCGA队列的分析表明,TP53(72%),CDKN2A(22%)和FAT1(24%)是HNSCC中最常见的突变基因。明显的TP53突变与预后不良相关。已收集了来自HNSCC患者的250种新鲜冷冻组织。特定于每位患者的三个活检,代表非肿瘤(切除缘),周围(距肿瘤≥1cm的组织学上无肿瘤组织)和肿瘤组织。结果:该队列受到定制的突变芯片的挑战,用于NGS分析突变,其中包括TP53,CDKN2A和FAT1基因的整个CD。我们发现,我们队列肿瘤中的TP53(743%)和CDKN2A(243%)突变频率与TGCA相似。我们的数据集中FAT1(38.6%)突变的频率较高。尚未注释许多识别的FAT1突变。由于我们还在手术中收集了匹配的血浆,因此在随访期间,我们的分析正在朝着鉴定患者CCF-DNA突变的鉴定。结论:此分析正在进行中,并将介绍相关数据。F. Ganci:不。F.Stinella:不。G. Cottone:不。 E. Cotronoon:不。 A.非:不。 A.出生:不。 A. Sacconi:不。 V.睡觉:不。 M. Palloca:不。 F. Rollo:不。 A. Covello:不。 M.贝沃夫:非。 Q.春季:不。 F. F. F.:不。 G. Blandino:不。G. Cottone:不。E. Cotronoon:不。A.非:不。A.出生:不。A. Sacconi:不。 V.睡觉:不。 M. Palloca:不。 F. Rollo:不。 A. Covello:不。 M.贝沃夫:非。 Q.春季:不。 F. F. F.:不。 G. Blandino:不。A. Sacconi:不。V.睡觉:不。M. Palloca:不。 F. Rollo:不。 A. Covello:不。 M.贝沃夫:非。 Q.春季:不。 F. F. F.:不。 G. Blandino:不。M. Palloca:不。F. Rollo:不。A. Covello:不。 M.贝沃夫:非。 Q.春季:不。 F. F. F.:不。 G. Blandino:不。A. Covello:不。M.贝沃夫:非。Q.春季:不。 F. F. F.:不。 G. Blandino:不。Q.春季:不。F. F. F.:不。 G. Blandino:不。F. F. F.:不。G. Blandino:不。G. Blandino:不。