神经形态工程已成为开发大脑启发式计算系统的一种有前途的途径。然而,传统的基于电子人工智能的处理器经常遇到与处理速度和散热相关的挑战。作为一种替代方案,已经提出了此类处理器的光学实现,利用光的固有信息处理能力。在光学神经形态工程领域探索的各种光学神经网络 (ONN) 中,脉冲神经网络 (SNN) 在模拟人脑的计算原理方面表现出显著的成功。光学 SNN 基于事件的脉冲特性提供了低功耗操作、速度、时间处理、模拟计算和硬件效率方面的功能,这些功能很难或不可能与其他 ONN 类型相匹配。在这项工作中,我们介绍了开创性的自由空间光学深度脉冲卷积神经网络 (OSCNN),这是一种受人眼计算模型启发的新方法。我们的 OSCNN 利用自由空间光学来提高功率效率和处理速度,同时保持模式检测的高精度。具体而言,我们的模型在初始层采用 Gabor 滤波器进行有效特征提取,并利用使用现成光学元件设计的强度到延迟转换和同步器等光学元件。OSCNN 在基准数据集(包括 MNIST、ETH80 和 Caltech)上进行了严格测试,显示出具有竞争力的分类准确性。我们的比较分析表明,OSCNN 仅消耗 1.6 W 的功率,处理速度为 2.44 毫秒,明显优于 GPU 上的传统电子 CNN,后者通常消耗 150-300 W,处理速度为 1-5 毫秒,并且与其他自由空间 ONN 相媲美。我们的贡献包括解决光学神经网络实现中的几个关键挑战。为了确保组件对准的纳米级精度,我们提出了先进的微定位系统和主动反馈控制机制。为了提高信号完整性,我们采用了高质量的光学元件、纠错算法、自适应光学和抗噪声编码方案。通过设计高速光电转换器、定制集成电路和先进的封装技术,优化了光学和电子元件的集成。此外,我们还利用高效、紧凑的半导体激光二极管,并开发了新颖的冷却策略,以最大限度地减少功耗和占地面积。
C~;~;lCAI~-SUPPI,Y 部分::.ni;;;ti;;."a·============--~---- .... --~~~ 1; DUGWAY 试验场。犹他州图埃勒,已完成•. _; __ .;...._~~ VI 华盛顿凯西机场 - 申报超额........ __________ ..c_...- VII 孟菲斯财务办公室,
抽象的光学神经网络(ONNS),可以使低潜伏期和无电磁干扰的高平行数据处理,已成为快速和节能处理和计算的可行参与者,以满足对哈希速率不断增长的需求。采用非易失性相变材料的光子记忆可以实现零静态功耗,低热横式谈话,大规模和高能量的光子神经网络。尽管如此,基于相位材料的光子记忆的开关速度和动态能量消耗使它们不适合原位训练。在这里,通过将一组相变薄膜与销钉二极管的微孔谐振器集成在一起,展示了双功能光子存储器,既可以启用5位存储和纳米秒挥发性调制。首次提出了与纳秒调制集成的电气变化材料驱动的光子记忆的概念,以允许在ONN中进行快速的原位训练和零静态功耗数据处理。ONNS具有由我们的光子存储器构建的光卷积内核在理论上构建的,当由MNIST手写数字数据库测试时,预测的准确性高于95%。这为构建具有高速原位训练能力的大规模非易失性ONN提供了可行的解决方案。
for Al 2017 和 Al 2024 Carlson Nailon 1 , M. F. Mahmod 1,2 * 1 机械与制造工程学院,Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, MALAYSIA 2 结构完整性与监测研究小组,Faculty of Tun Hussein Onn Malaysia机械与制造工程, 敦侯赛因翁大学 马来西亚, 86400马来西亚柔佛州巴力拉惹 *通讯作者指定 DOI:https://doi.org/10.30880/rpmme.2021.02.02.101 收稿日期:2021 年 8 月 10 日; 2021 年 11 月 28 日接受; 2021 年 12 月 25 日在线发布 摘要:选择前腿座椅的材料飞机部件需要对其物理特性进行大量研究,例如强度、延展性、耐腐蚀性,这些特性也受到材料生产工艺和零件生产工艺的影响。是用于制造飞机前腿座椅的各种材料,即铝合金,Al 2017 和 Al 2024。在本文中,对 Al 2017 和 Al 2024 进行了拉伸试验和疲劳试验模拟,其中分析是在 Ansys Workbench 中完成的相同的条件和负载。这些测试是使用两个圆柱形狗骨样品完成的,遵循几何标准;拉伸试验模拟为 ASTM E8-16a,疲劳试验模拟为 ASTM E466-07。拉伸试验和疲劳试验模拟分析是在其中一个试件末端施加 100 kN 力,并在另一个试件末端施加固定支撑的情况下进行的。在
a = a:ca> f:g dge :G ~AA@<fAGk g{~h OM S12 9I5p7I4S 76 17XM217N5M^ O44XON I4L792 I4 Mp2LIvL 82RI74M 76 S12 L7X4S8]P 7XM217N5 I4L792 N2K2NM O82 ONM7 XM25 S7 52S289I42 17XMI4R O66785O INIS] 678 5I662824S I4L792 R87XPMP 4 S12J87KI524L2X ONN IK28 IK28 82RI74Y 82RI74Y S12 ACD 678 O 678 O 678 O 678 o 678 o 67x8xp28x8m74 17 x17 ] 2O8P 01IM 92O4M S1OS O67x8xp28m74 17xm217N5 2O84I4R _` \ 76 ACD I4 J87KI524L2 9O 2M Z Y`P28] 2O8 2O8 2O8 2O8 2O844IRIS 2o84i4r u` \ 76 acd 9o 2m s y`p28] 2o8p:G ~AA@<fAGk g{~h OM S12 9I5p7I4S 76 17XM217N5M^ O44XON I4L792 I4 Mp2LIvL 82RI74M 76 S12 L7X4S8]P 7XM217N5 I4L792 N2K2NM O82 ONM7 XM25 S7 52S289I42 17XMI4R O66785O INIS] 678 5I662824S I4L792 R87XPMP 4 S12J87KI524L2X ONN IK28 IK28 82RI74Y 82RI74Y S12 ACD 678 O 678 O 678 O 678 o 678 o 67x8xp28x8m74 17 x17 ] 2O8P 01IM 92O4M S1OS O67x8xp28m74 17xm217N5 2O84I4R _` \ 76 ACD I4 J87KI524L2 9O 2M Z Y`P28] 2O8 2O8 2O8 2O8 2O844IRIS 2o84i4r u` \ 76 acd 9o 2m s y`p28] 2o8p
使用 SF 6 和 CHF 3 气体的工艺 Muhammad Hidayat Mohd Noor 1 , Nafarizal Nayan 1,2 * 1 电气和电子工程学院 (FKEE), Universiti Tun Hussein Onn Malaysia, 86400, Batu Pahat, Johor, MALAYSIA 2 微电子和纳米技术 - Shamsuddin 研究中心 (MiNT-SRC), Universiti Tun Hussein Onn Malaysia, 86400, Batu Pahat, Johor, MALAYSIA *通讯作者指定 DOI:https://doi.org/10.30880/eeee.2022.03.02.010 2022 年 6 月 27 日收稿; 2022 年 7 月 24 日接受; 2022 年 10 月 31 日在线提供摘要:反应离子刻蚀 (RIE) 是一种用于微加工的刻蚀技术,也是干法刻蚀的方法之一,与湿法刻蚀相比具有不同的特性。RIE 中的反应等离子体的化学过程用于去除晶圆上沉积的材料。RIE 蚀刻机有几个可变因素,例如射频功率、压力、气体流速和蚀刻时间,这些因素对应于其蚀刻深度和蚀刻速率的输出参数。需要进行大量实验才能找到 RIE 的最佳设置,从而为输出蚀刻速率建立理想的条件。在本研究中,使用供给 RIE 系统的 SF 6 和 CHF 3 工艺气体对 Si 和 SiO 2 晶圆进行蚀刻。使用 Dektak XT Bruker 表面轮廓仪研究了蚀刻深度和蚀刻速率,并使用 3D 映射模式表征了蚀刻后的 Si 和 SiO 2 的表面粗糙度。结果显示了不同射频功率、时间和流速对蚀刻深度和速率的影响,从而可以选择最佳参数。关键词:反应离子蚀刻、RIE、等离子蚀刻、硅、二氧化硅
Al 2017 和 Al 2024 Carlson Nailon 1 , MF Mahmod 1,2 * 1 机械和制造工程学院, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, MALAYSIA 2 结构完整性和监测研究小组, 机械和制造工程学院, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja,马来西亚柔佛州 *通讯作者指定 DOI:https://doi.org/10.30880/rpmme.2021.02.02.101 于 2021 年 8 月 10 日收到; 2021 年 11 月 28 日接受; 2021 年 12 月 25 日在线提供摘要:选择前腿座椅的飞机部件材料需要对其物理性能进行大量研究,例如强度、延展性、耐腐蚀性,这些也会受到材料生产工艺和零件生产工艺的影响。制造飞机前腿座椅的材料多种多样,即铝合金,Al 2017 和 Al 2024。本文对 Al 2017 和 Al 2024 进行了拉伸试验和疲劳试验模拟,分析是在相同条件和负载下使用 Ansys Workbench 进行的。这些测试是使用两个圆柱形狗骨试样按照几何标准完成的;拉伸试验模拟为 ASTM E8-16a,疲劳试验模拟为 ASTM E466-07。拉伸试验和疲劳试验模拟分析是在其中一个试样端部施加 100 kN 力并在另一个试样端部施加固定支撑的情况下进行的。本研究通过拉伸试验模拟得出的结果表明,Al 2024 具有较高的屈服强度和拉伸极限强度,分别为 280 MPa 和 895.67 Mpa。同时,疲劳试验模拟确定 Al 2017 和 Al 2024 的疲劳寿命值相同,均为 1x10^8。在疲劳损伤方面,Al 2024 的疲劳损伤较小,为 4172.2,这意味着其安全系数较低,为 4.7198。因此,在本研究中,Al 2024 强度更高,抗疲劳性能优异。关键词:拉伸模拟、疲劳模拟、Ansys Workbench、铝 2024、铝 2017
Al 2017 和 Al 2024 Carlson Nailon 1 , MF Mahmod 1,2 * 1 机械和制造工程学院, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, MALAYSIA 2 结构完整性和监测研究小组, 机械和制造工程学院, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja,马来西亚柔佛州 *通讯作者指定 DOI:https://doi.org/10.30880/rpmme.2021.02.02.101 于 2021 年 8 月 10 日收到; 2021 年 11 月 28 日接受; 2021 年 12 月 25 日在线提供摘要:选择前腿座椅的飞机部件材料需要对其物理性能进行大量研究,例如强度、延展性、耐腐蚀性,这些也会受到材料生产工艺和零件生产工艺的影响。制造飞机前腿座椅的材料多种多样,即铝合金,Al 2017 和 Al 2024。本文对 Al 2017 和 Al 2024 进行了拉伸试验和疲劳试验模拟,分析是在相同条件和负载下使用 Ansys Workbench 进行的。这些测试是使用两个圆柱形狗骨试样按照几何标准完成的;拉伸试验模拟为 ASTM E8-16a,疲劳试验模拟为 ASTM E466-07。拉伸试验和疲劳试验模拟分析是在其中一个试样端部施加 100 kN 力并在另一个试样端部施加固定支撑的情况下进行的。本研究通过拉伸试验模拟得出的结果表明,Al 2024 具有较高的屈服强度和拉伸极限强度,分别为 280 MPa 和 895.67 Mpa。同时,疲劳试验模拟确定 Al 2017 和 Al 2024 的疲劳寿命值相同,均为 1x10^8。在疲劳损伤方面,Al 2024 的疲劳损伤较小,为 4172.2,这意味着其安全系数较低,为 4.7198。因此,在本研究中,Al 2024 强度更高,抗疲劳性能优异。关键词:拉伸模拟、疲劳模拟、Ansys Workbench、铝 2024、铝 2017