髓质胸腺上皮细胞(MTEC)通过胸腺内的外周神经组织抗原(PTA)产生免疫自耐力,以预览外围自我对成熟T细胞的外围自我。最近的工作是从旧的组织学观察中汲取灵感的,它表明,MTEC的亚类型,共同称为模拟细胞,从整个生物体中的同类发展程序,以表达PTA的生物相干组。在这里,我们回顾了模拟细胞的关键方面,尤其是它们与分子,细胞,发育和进化生物学的较大背景有关。我们重点介绍了谱系定义的转录因子作为模拟细胞的关键调节剂,并推测了哪些其他因素(包括AIRE和MTEC的染色质潜力)允许模拟细胞的分化和功能。最后,我们考虑哪些模仿细胞不仅可以教给我们有关胸腺,而且还可以教给其他组织。
威廉·林德 (William Lind) 等作家认为,消耗战是一种战争形式。3 根据林德的说法,消耗战以牺牲机动性为代价,使用火力来减少敌方战斗人员的数量。林德和他的同事们进一步指出,其他类型的战争利用火力和机动性为对手创造意想不到的危险局面。4 爱德华·鲁特瓦克 (Edward Luttwak) 持几乎相同的观点,他写道,“消耗战”以牺牲更多以机动为中心的战争方式为代价,创造了对火力的过度依赖。5 在经常被引用但有缺陷的《奔向迅捷:对二十一世纪战争的思考》一书中,理查德·辛普金 (Richard Simpkin) 将机动和消耗战置于对比的悬置位置——将每种理论视为另一种理论的对立面,并断言前者远远优于后者。6
词汇表 主动睡眠 REM 睡眠的几个替代名称之一,另外还有异相睡眠、不同步睡眠等。尽管有些人限制将其用于发育中的动物,但也有人更喜欢将其更普遍地用作对这种状态的更客观的描述。 晚成性 出生时处于相对未成熟状态的动物。这样的后代通常出生时没有毛皮或绒毛,眼睛被封住,相对不动,依靠母亲的照料来获得营养、温暖和保护。狗、老鼠和鹰就是晚成性物种的例子。 肌阵挛性抽搐 四肢和其他附属物(例如,胡须、眼睛)的短暂、抽搐性运动,主要发生在 REM 睡眠期间。它们是由骨骼肌激活产生的。 早熟性 出生时处于相对成熟状态的动物。此类后代通常出生时身上有毛皮或绒毛,眼睛睁开,相对灵活,不像晚成性物种那样依赖母体提供营养、温暖和保护。绵羊、马和鸭子就是早熟物种的例子。安静睡眠 非快速眼动睡眠的几种替代名称之一,还有慢波睡眠、同步睡眠等。虽然有些人将其限制用于发育中的动物,但其他人更喜欢将其更广泛地用作对这种状态的更客观的描述。
摘要本文提出了一种新的方法,用于构建一个问题回答模型,以分析环境部门内的全国确定贡献(NDC)报告。该方法基于配备了检索增强发电(RAG)并通过本体集成增强的大型语言模型(LLM)。承认直接应用抹布所固有的挑战,我们的方法始于开发用于NDC报告的专业本体论框架。该框架支持知识图的构建,该图形为问题回答(QA)模型提供了必要的,可验证的信息。在下一步中,该模型将抹布的嵌入与基于本体的查询相结合,旨在提高各种NDC报告中答案的可靠性。我们通过在不同LLM的一组问题和人/AI评估中测试混合模型的性能。虽然结果表明与气候变化相关的QA模型的效率提高,但它们也强调了在该域中获得显着增强的复杂性。我们的发现有助于对将本体论方法与LLM相结合以进行环境信息检索的潜在和局限性的持续讨论。
将以下情况作为指导示例:我们想检查某些多孔介质的样本,例如开放式沥青混凝土,并使用微型X射线计算机断层扫描(X-RCT)扫描来检测材料中的微断裂[18]。测量过程可以通过以下意义通过ra trans形对数学建模:当X射线在线上通过对象行进时,该线路上的材料将使它减弱。这种衰减取决于我们要重建材料的密度。在数学上,在检测器中测得的信号现在可以表示为ra换变换,即所谓的X射线函数的X射线变换。因此,要重建断裂图像,必须将用于X射线变换反转的算法应用于观察到的数据。除其他外,算法的选择取决于所测量的数据和模型的属性,例如所使用的坐标系。这些元数据通常不会系统地存储,从而违反了公平原则[28],因为无法保证可重复使用性。因此,有兴趣应用X-RCT(可能在考古学或生物医学等其他研究领域)的研究人员不能简单地重复使用,但可能必须重新验证文献搜索算法,软件实现和参数。由于其来自工程的起源,来自不同领域的数据与基本的一般数学概念没有链接。因此,尽管基本的数学模型可能完全相同,但应用程序之间的协同作用并未利用。1应该被捡起。创建知识图(kg),包括模型,算法,相关文献和进一步的元数据,这是本文的范围。通常,在典型的建模仿真 - 优化(MSO)工作流程中产生的问题如图所示。这些包括模型的实验,解决方案算法的可用性,输入或观察数据或模型有效性。通常,回答这些问题需要大量的努力,如果所需的信息可访问并删除 -
能量在我们周围的物理世界和我们的日常生活中无处不在:所有自然和技术过程均由能量驱动。一些例子是:我们的身体从我们吃的食物中获取能量,我们的计算机需要电能来源才能发挥作用,并且植物需要阳光才能进行光合作用。能量是科学中的核心概念,尤其是物理,化学和生物学及其应用。这也是工程和技术问题的主要主题。尽管能量在许多领域都起着至关重要的作用,但其本体论代表也对质疑开放。正如我们将在第2节中讨论的那样,不同的领域本体论代表了不兼容的方式。可以通过考虑以下有关能源的陈述来说明原因,至少 - 表面上 - 似乎都是正确的。
摘要:本文调查了神经名称学中知识的可靠性及其与现实的联系所带来的挑战。神经素学研究试图了解人类意识,认知和潜在神经过程之间的复杂关系。然而,有意识的经历的主观性质在确定本研究中产生的知识的可靠性时提出了独特的认知挑战。个人因素(例如信念,情感和文化背景)会影响主观经验,这些经验从分裂到个人都不在不同。另一方面,科学知识旨在根据经验观察和客观原则揭示普遍的真理。调和主观和客观领域在确定通过神经素学研究产生的知识的可靠性方面提出了重大挑战。本文旨在研究神经素学研究的固有局限性和挑战,以阐明理解知识本身的性质所涉及的复杂性。本文强调说,神经素学中知识可靠性的本体论含义源于主观经验与客观现实的关系的问题。理解主观经历背后的神经相关性和机制可以提供对意识的基本本体论性的见解。
由战略家赫尔曼·卡恩(Herman Kahn)于1961年成立,哈德森学院(Hudson Institute)挑战了传统思维,并通过国防,国际关系,经济学,能源,技术,文化和法律的跨学科研究来帮助管理对未来的战略过渡。
S. Kwok*(1),L。Nguyen(2),K。Raymond(2),A。Larkins(1),H。Omar(1),M。Bruce(1),