摘要 CMOS 技术的扩展允许设计更复杂的系统,但同时也带来了一些可靠性问题。特别是,大幅扩展的微电子技术受到偏置温度不稳定性 (BTI) 老化现象的影响,这种现象导致晶体管阈值电压的绝对值随老化时间增加,从而降低微电子电路的可靠性。在本文中,我们估计了 BTI 对开环配置的运算放大器 (OPAMP) 以及基于 OPAMP 的三个卓越模拟放大器的性能下降。结果表明,BTI 会严重影响所研究电路的性能,并且这种性能下降会随着工作温度的升高而恶化。我们还简要介绍了一种可能的低成本监控方案,用于检测由 BTI 引起的 OPAMP 性能下降。我们的监控器的有效性已通过布局前电气模拟得到验证,结果表明它可以可靠地用于评估 OPAMP 的老化性能下降。
实验6:BJT放大器的频率响应 11 差分和多级放大器 实验7:BJT差分放大器 12 理想运算放大器 实验8:运算放大器特性 13 运算放大器电路和非理想效应 实验9:运算放大器应用 14 反馈和稳定性 实验10:反馈应用 评分实验室练习 30%,期中考试 30%,期末考试 40%。资源
MC4558N88 IC DUAL OPAMP 8P 5.5MHz SOSTITUISCE:AN4558,BA4558N,CD45558,GL4558,KIA4558,LA3130,LM45558,LS4558N,LS4558N,LS4558N,MC45558CN,MC4555855585555585558,RC4558,RC4558,RC4558,RC4558,RC4558,RC4558,RC4558,RC4558,RC4558,RC4558,RC4558,RCRC4558,RC4558,RC4558,RCRC4558,RC4558,RC4558,RC4558。
基本运算放大器 – 反相和非反相运算放大器 – 差分运算放大器 – CMRR – 运算放大器作为符号和比例变换器移相器积分器的基本用途。微分器和加法器 D/C – 二进制加权方法 – R-2R 梯形法 – A/C 逐次逼近和计数器方法 – OpAmp 作为比较器 学习书籍:
Course Content: Module 1: INTRODUCTION TO VLSI DESIGN: What is VLSI Design and Microelectronics / Practical Applications of Integrated Circuits / Why study VLSI Design and Microelectronics / Career Prospects in VLSI Design / ASIC Design Flow / Types of Integrated Circuits ( Full Custom / Semi Custom / Gate Array ) / State of the Art in VLSI Design.模块2:MOSFET的操作和建模:MOSFET作为开关 / NMOS和PMOS晶体管 / MOS设备 / MOS设备的物理 /操作 /电流方程在不同区域 /阈值电压 /身体效应 /车身效应 /通道长度调制 /速度饱和 /短通道效果 /简短通道效应 /简介Spice Simulation。模块3:CMOS工艺技术和芯片制造:半导体晶体生长 /晶圆制剂的简介 /外交 /氧化 /扩散 /光刻 /金属化 /金属化 /蚀刻 /芯片包装和测试。模块4:数字CMOS电路的电路设计和布局:组合和顺序电路 /逻辑门 /闩锁和flops和flops /逻辑设计样式 /逻辑系列。模块5:CMOS模拟电路设计 - 简介:MOSFET / MOS模型 /电流源 /电流镜像 /差分放大器 /比较器 / opamp / opamp / bgr / dac / dac / adc / pll / rf电路的电流方程。模块6:模拟布局 - 概述:电阻器 /电容器 / MOSFET /匹配技术的布局(互构化和公共质心布局) /可靠性问题 - 电气移民 / ir drop / crosstalk / crosstalk / latchup / eSD / eSD /天线效应。行业标准EDA / CAD介绍模拟布局。
工艺改进。本研究的具体研究贡献包括:(1) 确定与开关电容电路相关的 MOS 器件可靠性问题,(2) 引入一种新的自举技术,用于在低压电源上操作 MOS 传输门,而不会显著缩短器件寿命,(3) 开发低压运算放大器设计技术。利用这些设计技术,可以实现开关电容电路所需的构建模块,从而能够在低压电源上创建采样、滤波和数据转换电路。作为演示,介绍了实验性 1.5 V、10 位、14.3MS/s、CMOS 流水线模数转换器的设计和特性。
CMOS电路,寄生电容,MOS缩放技术,闩锁,匹配问题,布局中常见的质心几何形状。用于逻辑,算术和顺序块设计的数字电路设计样式;使用逻辑工作的设备尺寸;定时问题(时钟偏斜和抖动)和时钟分布技术;能源消耗的估计和最小化;功率延迟权衡,互连建模;内存体系结构,内存电路设计,感官放大器;集成电路测试的概述。基本和级联的NMOS/PMOS/CMOS增益阶段,差分放大器以及高级OPAMP设计,设备的匹配,错配分析,CMRR,PSRR和SLEW速率问题,偏移电压,高级电流镜;电流和电压参考设计,共同模式反馈电路,频率响应,稳定性和噪声问题;频率补偿技术。
1. 研究放大器的类型 2. 研究运算放大器的不同参数。 3. 反相放大器和非反相放大器的频率响应。 4. 研究运算放大器作为反相放大器和非反相放大器。 5. 运算放大器电路 – 积分器、微分器和比较器等。 6. 使用运算放大器实现相移和振幅稳定的维恩桥振荡器。 7. 波形生成 – 使用运算放大器生成方波、三角波和锯齿波。 8. 运算放大器作为低通滤波器、高通滤波器和带通滤波器的应用。 9. 验证半加器/全加器电路的功能。 10. 验证二进制到格雷码转换的功能。 11. 验证锁存器和触发器的功能。 12. 验证计数器电路,如二进制增/减、十进制、环形、约翰逊等。
实验 注意:至少要进行五个实验 1. 绘制 Si PN 结二极管的正向/反向特性。 2. 绘制齐纳二极管的正向/反向特性 3. 研究并绘制齐纳二极管作为稳压器的特性 4. 研究半波整流器并绘制输入/输出信号的性质。计算 Idc、Irms 的值和纹波系数。 5. 研究全波整流器并绘制输入/输出信号的性质。计算 Idc、Irms 的值和纹波系数。 6. 研究桥式整流器并绘制输入/输出信号的性质。计算 Idc、Irms 的值和纹波系数。 7. 画出 CE 配置中 npn 晶体管的输入输出特性曲线 8. 画出 CB 配置中 npn 晶体管的输入输出特性曲线 9. 画出 JFET 的漏极和传输曲线 10. 研究 OPAMP (741) 并计算 (i) 反相模式和 (ii) 非反相模式下的增益