Acknowledgments 3 Executive Summary 4 Introduction 7 Data and training AI systems: the state of play 9 AI systems and openness 10 AI systems and data 11 The challenge: the openness of datasets and Open Source AI development 15 Problem definition 17 A paradigm shift is needed 19 First paradigm shift: from beyond open data to data commons 19 Second paradigm shift: a stakeholder universe beyond AI developers and dataset creators 21 Searching for solutions 26 Six focus数据和开源AI 28重点区域:数据准备28重点领域:偏好信号和许可29重点领域:数据管理员和保管人30重点区域:环境可持续性31重点领域:互惠和薪酬31焦点区域:政策干预32前进34关于白皮书35
量子汉密尔顿复杂性的目的[17,42]是研究当地汉密尔顿人所描述的物理模型的计算能力,其动态及其特征状态的复杂特性,以及了解确定这些特性的综合复杂性。许多汉密尔顿人在量子构成方面都是普遍的[13],而其他汉密尔顿人则认为更简单,但仍然很难通过经典计算进行经典研究[7]或什至有效地模拟[27]。有一个悠久的历史,即寻找最简单的可能性,最接近现实,有效地实现,并且可以通过通用动力学来实现与当地汉密尔顿人的量子计算。对相互作用,局部性和几何限制的类型和强度的限制进行了研究,例如在参考文献中。[13,20,26,37,39,40]。对计算的普遍性的思考通常与提出复杂性问题(例如确定确定这些哈密顿人特征性特性的强硬特性)的问题息息相关。从量子控制理论的角度来看这一点为我们提供了一个有趣的观察。对子系统的额外控制水平可能会导致状态发生的可能性或复杂性问题的困难。我们已经使用DQC1(“一个清洁量子”)模型[30,36]看到了这一点,其单个可完全定量(清洁)量子的单个量子比经典计算产生了量子优势。在这项工作中,我们通过控制一个小子系统来研究收到的计算潜力。类似地,如果允许使用魔术状态,则使用有限的通用门(例如Clifford Gates [8])进行计算,以进行量子计算。使用扰动gad-有效地将系统的部分固定到特定状态,使我们能够从更简单的人中建立复杂的有效汉密尔顿人[24]。也已经表明,小子系统的Zeno效应测量可以赋予非普遍的通勤大门的普遍力量[10]。我们专注于一种称为固定的控件类型 - 固定
(1) 本计划可能使用分级急诊室保险,第一次就诊后,您将承担更高的费用。 (2) 3 美元处方药清单适用于所有市场(加利福尼亚州除外)。有关详细信息,请参阅注册材料。对于通常承保的药物,请查看处方药清单 (3) Cigna 的内部数据,2022 年 10 月。可能会更改。 (4) 如果您不在家,Virtual Urgent Care 不提供国际服务。在达到自付额之前,HSA 计划的会员需要分担 Virtual Urgent Care 的费用,超过此额度后,共付额为 0 美元。会员只能通过电话访问 Virtual Urgent Care。这适用于自 2022 年 1 月 1 日起生效的新团体以及 2022 年团体续保时。作为您计划的一部分,Cigna 通过全国远程医疗提供商提供虚拟护理。此服务与您的健康计划网络无关,可能并非在所有地区都可用。 * 对于高免赔额 HSA 计划,HSA 预防药物清单上的药物可免除。 * * 为遵守联邦法律,如果符合条件的员工由于残疾或其他原因无法参加任何激励计划活动或目标,他们可能会获得合理的参与安排,或获得替代的奖励标准。
在大规模数据集训练的生成模型的最新进展使得可以合成各个领域的高质量样本。此外,强烈反转网络的出现不仅可以重建现实世界图像,还可以通过各种编辑方法对属性进行修改。,在与隐私问题有关的某些领域中,例如Human Faces,先进的生成模型以及强大的反转方法可能会导致潜在的滥用。在此过程中,我们提出了一个必不可少但探索的任务不足的任务,称为生成身份,该任务引导该模型不要生成特定身份的图像。在未经学习的生成身份中,我们针对以下内容:(i)防止具有固有身份的图像的产生,以及(ii)保留生成模型的整体质量。为了满足这些目标,我们提出了一个新颖的框架,对任何IDE NTITY(指南)进行了努力,该框架通过仅使用单个图像来删除发电机来阻止特定身份的重建。指南由两个部分组成:(i)找到一个优化的目标点,该目标点未识别源潜在代码和(ii)促进学习过程的新型损失函数,同时影响较小的学习分布。我们的广泛实验表明,我们提出的方法在通用机器学习任务中实现了最先进的性能。该代码可在https://github.com/khu-agi/guide上找到。
摘要 - 真实的硬件PLC非常昂贵,有时科学家/工程师无法建立小型测试床并进行实验或学术研究。为此,OpenPLC项目引入了合理的替代选项,并在编程代码,模拟物理过程以及使用低成本设备(例如Raspberry Pi和Arduino uno)中提供了灵感。不幸的是,OpenPLC项目的设计没有任何安全性,即缺乏保护机制,例如加密,授权,反复制算法等。这使攻击者可以完全访问OpenPLC并进行未经授权的更改,例如启动/停止PLC,设置/更新密码,删除/更改用户程序等。在本文中,我们进行了深入的调查,并披露了OpenPLC项目中存在的一些漏洞,表明攻击者既没有对用户凭据,也不对物理过程进行任何先验知识;可以访问关键信息,并有效地更改OpenPLC执行的用户程序。我们所有的实验均在最新版本的OpenPLC(即V3)上进行。我们的实验结果证明,攻击者可能会混淆受感染的OpenPLC控制的物理过程。最后,我们建议OpenPLC创始人和工程师关闭所披露的漏洞并具有更安全的基于OpenPLC的环境的安全建议。索引条款 - OpenPlc;网络攻击;网络安全;控制逻辑注射攻击;
尽管拉丁美洲和加勒比地区 (LAC) 在过去 20 年里没有发生过国家间武装冲突,但暴力、政变、侵犯人权以及非法武装团体的存在继续对该地区的和平与安全构成重大挑战。随着联合国将注意力集中在为所有人建立一个开放、自由、安全和以人为本的数字化未来,包括最近制定的全球数字契约 (GDC) ,拉丁美洲和加勒比地区的和平建设者正在开拓性地探索如何利用人工智能 (AI) 和开源情报 (OSINT) 以本地化、包容和冲突敏感的方式支持建设和平和预防冲突 1 。 ___________________________________________________________________________
NAVFAC 开放环境修复资源 (OER2):确定 MEC/MPPEH 水下埋藏深度的方法军用弹药被发现在某些水下位置,这是历史处置活动以及实弹训练、测试和其他操作的结果。在水下环境中仍能发挥作用的射弹和其他弹药构成爆炸危险,可能会迁移,使人员接触到这些弹药。这种爆炸危险的管理很复杂,取决于特定地点的考虑因素,例如弹药类型、海洋环境、移动潜力以及人员如何接触和与弹药互动。本次网络研讨会的目的是总结为了解水下环境中弹药的移动性和埋藏而开发的科学。将介绍环境观测、弹药观测技术、移动性和埋藏现场观测、移动与埋藏的物理学以及埋藏的物理过程建模。演示将以将这些知识在现有场地的实际应用结束。 演讲者:Bryan Harre,NAVFAC EXWC 和 Joe Calantoni,美国 NRL 博士 日期:2022 年 11 月 9 日,星期三 时间:太平洋时间上午 11 点 | 美国东部时间下午 2 点 通过以下链接注册参加网络研讨会:https://einvitations.afit.edu/inv/anim.cfm?i=697664&k=0468450F7D53 如果您无法点击链接,请将地址复制并粘贴到您的网络浏览器中。 州际技术与监管委员会 (ITRC) 关于可持续弹性修复 (SRR) 的网络研讨会 极端天气事件会对修复措施保护人类健康和环境的能力产生不利影响。可持续弹性修复 (SRR) 被定义为“清理和再利用危险废物场地的优化解决方案,可限制负面影响、最大化社会和经济效益并增强对日益增加的威胁的抵御能力”。该网络研讨会介绍了一些工具,可帮助将可持续和有弹性的实践融入修复项目中。主题:可持续的弹性修复演讲者:ITRC 日期:2022 年 11 月 17 日时间:太平洋时间上午 10 点 | 美国东部时间下午 1 点通过以下链接注册参加 ITRC 网络研讨会:https://clu-in.org/conf/itrc/SRR/有关更多信息,请查看 ITRC 关于此主题的报告:https://srr-1.itrcweb.org/ RPM 培训活动主题的最后一次征集 RPM 培训主题的最后一次征集:现在到 2022 年 11 月 16 日链接:https://einvitations.afit.edu/inv/anim.cfm?i=699708&k=04684B0E7B5F RPM 培训日期更新:2023 年 3 月 14 日至 16 日*这与原始/预计日期不同* 正在评估场地,活动举办批准将决定最终日期和地点。
我们发现,对于七个领域中的六个,我们分析的研究并未为开放基础模型的边际风险提供有说服力的证据:他们不考虑框架中的步骤,例如现有技术或防御能力如何适应边际风险。但是,对于与CSAM相关的风险,Thiel等人。(2023)3进行了完整的分析,该分析显示了未能令人满意解决的开放基础模型的边际风险。4为了提供指导,我们对自动网络安全脆弱性检测和NCII进行了初步的边际风险评估,我们发现,当前开放基础模型的边际风险较低,对于自动化脆弱性检测(部分是由于AI的有效性而用于防御的效率),而开放模型的开放型风险对NCII有可能。
4 数据表记录了收集给定数据集背后的动机,以及任何数据处理和受影响的利益相关者。模型卡包括有关模型架构和开发、其预期和超出范围的用途、评估指标、训练数据和道德考虑的披露。
