2024 年 12 月 2 日 — 使用 optimum-intel 软件包转换和优化模型 pip install optimum-intel[openvino]。下载并将模型转换为 OpenVINO IR 格式...
性能结果基于截至配置中所示日期的测试,可能无法反映所有公开可用的更新。请参阅备份以了解配置详情。没有任何产品或组件能够绝对安全。您的成本和结果可能会有所不同。英特尔技术可能需要启用硬件、软件或激活服务。© 英特尔公司。英特尔、英特尔徽标和其他英特尔标志是英特尔公司或其子公司的商标。其他名称和品牌可能是其他财产。
Lenovo Thinksystem SR650 V3凭借Intel第五代处理器,为生成AI用例提供了高度性能且可扩展的解决方案,包括那些对成功用户体验的低延迟要求(例如实时聊天机器人)(目标延迟约为100ms)。它在单个2U服务器中提供了多个存储和网络选项,可适应各种业务需求,同时提供无缝的可扩展性以适应不断变化的需求。它支持DDR5-5600 mt/s的内存模块,以及一个或两个第五代英特尔Xeon处理器,该处理器融合了Intel Advanced Matrix扩展名(Intel AMX),以满足尖端AI工作负载的计算密集要求。此外,它包含三个驱动器区域,该区域可支撑高达20x 3.5英寸或40x 2.5英寸热交换驱动式托架,以高效且可扩展的存储空间。
Machine Learning Engineer Sep 2021 ‑ Sep 2023 • Product worked on: Digital eye‑ware measurement software and Glasses and Lenses showcase app • Responsibilities: Data handling from partner data provider Data tagging for facial measurements and data formatting Use pre‑trained models for head detection and feature extraction (OpenVino) Train and evaluate models for lenses segmentation Integrate trained models into the multi‑platform QT‑based client Zeiss,Optiswiss,Seiko和许多更多的应用程序,以便在低功率嵌入式硬件上运行,以在C ++和QT框架中为镜头和眼镜构建光学的应用程序,用于精工设计后端功能和QT框架,基于Google Analytics服务Suite Suite和工具:PIYTH,C++++++++++++py,py+++ TensorFlow,Cuda,Tensorboard,Numpy,Matplotlib
● Engineering various sensor interfaces on a robot ● Using Linux, ROS, Python, C/C++, OpenCL, OpenGL, GStreamer, OpenCV or similar ● Using deep learning AI frameworks for both training and inference, including TensorFlow, PyTorch and OpenVINO ● User Interface Development Tools such as QT, Websockets, and JavaScript ● Developing algorithms for robots或在真实或模拟环境中的无人机●通过现场数据收集和迭代来验证和改进设计●机器学习工作流程涉及擦洗,组织和注释图像和视频数据
图 4. 英特尔数字孪生边缘控制器 海运港口运营商可以通过实施智能港口技术来应对日益增加的可靠性、安全性、效率和成本挑战。英特尔及其生态系统合作伙伴提供使用英特尔® SceneScape 控制器、摄像头和传感器(带有英特尔组件)、CPU、高性能集成显卡和现场可编程门阵列 (FPGA) 技术进行图像采集和处理的解决方案。英特尔® OpenVINO 工具包™ 分发版等可部署的软件包也有助于加速 AI 推理和决策。这些解决方案结合了传感器硬件和软件、边缘到云处理技术和人工智能,有助于为海运组织提供更好的洞察。更好的洞察有助于做出更好的运营和安全业务决策,从而实现更可靠、更准时的运营。
1. 西门子医疗的这项功能目前正在开发中,尚未出售。5.5 倍加速:基于西门子医疗和英特尔对第二代英特尔至强铂金 8280 处理器(28 核)192GB、DDR4-2933 的分析,使用英特尔 OpenVino 2019 R1。HT ON,Turbo ON。CentOS Linux 版本 7.6.1810,内核 4.19.5-1。el7.elrepo.x86_64。自定义拓扑和数据集(图像分辨率 288x288)。将 FP32 与 Int8 与系统上的英特尔 DL Boost 性能进行比较。2.《美国心脏病学会杂志》,2017 年。性能结果基于截至 2018 年 2 月的测试,可能无法反映所有公开的安全更新。有关性能和基准测试结果的更多完整信息,请访问 www.intel.com/benchmarks。
带有相关 Tensorflow* 或 PyTorch* 内核的 Jupyter* 笔记本,从源代码存储库克隆训练示例笔记本 (ipynb 文件),使用所选数据集训练模型并将训练好的模型上传到您选择的存储设施。通过“启动 Red Hat OpenShift Data Science”学习路径了解有关如何使用 Red Hat* OpenShift* Data Science 的更多信息。对于本教程中选择的示例,我们假设开发人员已完成此部分,并将训练好的 PyTorch* 肾脏分割模型上传到 AWS* S3 存储桶。为方便起见,我们以 OpenVINO™ 中间表示 (IR) 文件的形式为本练习提供预训练模型。有关说明,请参阅先决条件部分。2. 不同英特尔® 硬件上的 AI 模型推理利用了英特尔® 开发者云
图 4。英特尔数字孪生边缘控制器 通过实施智能港口技术,海事港口运营商可以应对日益增长的可靠性、安全性、效率和成本挑战。英特尔及其生态系统合作伙伴提供使用英特尔® SceneScape 控制器、摄像头和传感器(配备英特尔成分)、CPU、高性能集成显卡和现场可编程门阵列 (FPGA) 技术进行图像采集和处理的解决方案。可部署的软件包(如英特尔® OpenVINO 工具包™ 分发版)也有助于加速 AI 推理和决策。这些解决方案结合了传感器硬件和软件、边缘到云处理技术和人工智能,有助于为海事组织提供更好的洞察。更好的洞察有助于做出更好的运营和安全业务决策,从而实现更可靠、更准时的运营。