摘要。本文介绍了旨在实现基于高性能晶格的加密术的Opentitan硬件根源的扩展。我们首先优化ML-KEM和ML-DSA(NIST选择标准化的两种主要算法)在针对Opentitan Big Number(OTBN)加速器的软件中。基于这些实现的分析结果,我们提出了与OTBN的紧密集成扩展,特别是从OTBN到Opentitan到Opentitan的Keccak Accelerator(KMAC Core)的接口(KMAC Core),并向OTBN ISA扩展以支持256位矢量的操作。我们在硬件中实现了这些扩展,并表明与未修饰的OTBN的基线实现相比,ML-KEM和ML-DSA的不同操作和参数集的速度在6到9之间。在OTBN中,细胞计数的增加不到12%,这一加速度的增加,这对应于整个Earlgrey Opentitan核心的增加不到2%。
摘要 - 直径为10厘米的自治微型航空车(MAV),由于其板载智能所启用了广泛的适用性,因此是一种新兴技术。但是,这些平台在运行的机载电源信封中受到很大的限制,即少于几百兆瓦,可以将车载处理器固定到简单的微控制器单元(MCUS)的类别中。这些MCU缺乏高级安全功能,从而通向广泛的网络安全漏洞,从相同频率的代理商之间的通信到恶意代码的机上执行。这项工作提出了一种开源系统 - 芯片(SOC)设计,该设计集成了由8核32位并行可编程加速器加速的64位Linux功能的主机处理器。异质系统体系结构与基于信任的开源Opentitan根源相结合。为了展示我们的设计,我们提出了一个用例,在该用例中,Opentitan在MAV登上的SOC上发现安全漏洞,并驾驶其独家GPIO开始启动LED闪烁的例程。此过程体现了两个棕榈大小的MAV之间的非常规的视觉通信:接收器MAV分类发件人的LED状态(ON或OFF),并且在平行加速器上运行的板载卷积神经网络;然后,它在1.3 s中重建一个高级消息,比当前的商业解决方案快2.3×。
量子计算的即将来临的威胁正在与物联网(IoT)的扩散一起前进。在无处不在的计算和不断发展的安全风险时代,量词后加密术正在成为一种关键的保障措施,可能很快变得必不可少。Opentitan于2024年2月发布了Opentitan的第一个开源硅芯片,标志着安全和值得信赖的硬件的重大突破[26]。安全性是Opentitan项目的一个基本方面,该平台配备了自定义加密协调员Opentitan Big Number Gumber Accelerator(OTBN)。理想地适合集成到IoT设备中,在优化otbn对量子后加密术的优化中仍然存在挑战。我们提出了8个新指令,以加速Kyber数理论变换和OTBN上的理论变换,并将它们集成到优化的实现中。我们证明,对于数量理论变换的基线实现,在基线实现上的性能改善因子为21.1倍,其反向的性能改善因子为24.3倍。通过硬件/软件共同设计,我们的方法完全利用了并行性的潜力,最大程度地利用了OTBN的现有功能,并向平台提出了一些适度的硬件修改。
摘要。Quantum加密(PQC)算法目前正在标准化,并且它们的早期实施效率不如成熟的公共密钥密码学(PKC)算法,这些算法从数十年的优化中受益。我们报告了加速数量理论变换(NTT)的努力,这是Kyber(ML-KEM)(ML-KEM)和二硫思军(ML-DSA)PQC算法中最昂贵的原始原始性。我们的目标平台是Opentitan Big Number Accelerator(OTBN),这是第一个开源硅芯片芯片的一部分。我们仅使用现有说明在OTBN组装中实现了Kyber NTT,并确定了其瓶颈。然后,我们对代码进行了重组,以利用Parlelism,并为开源协作处理器定义了其他汇编指令,以实现我们的矢量插入。我们的硬件/软件共同设计方法产生了重大的性能:NTT的运行速度比仅使用OTBN现有说明的基线实现快21.1倍。我们的方法充分利用了并行性的潜力,并最大程度地说明了OTBN的现有能力。我们的一些优化是相当笼统的,可能会成功地应用于其他上下文,包括在其他平台上加速其他算法。