在日常环境中使用物联网(IoT)传感器和设备的压倒性用途(房屋,医院,酒店,制造地板,仓库,零售店,机场,智能城市等。),如今,实时感知和驱动的长期目标是看到一个宏伟的现实。环境和自适应通信技术可以实现特定特定和不可知论的物联网产品,解决方案和服务的快速增长领域。可以建立并交付给相关人员和系统的跨业务垂直行业的各种情境知识服务和应用程序。多方面的物联网传感器嵌入到各种物理系统中,例如机器人,无人机,飞行引擎,防御设备,医疗器械,电器,厨房用具,消费电子,消费电子,货车,制造机械等。进行此填充是为了不断地监视和测量物理系统的各种参数(日志,结构,操作,健康状况,绩效,安全性等)。IoT设备和传感器部署在工作,散步,购物,社交和放松的地方是连接和数字化的实体。目标是使这些设备和传感器能够在其操作,输出和产品方面具有智能。这些要素在我们的个人,社会和专业环境中大量部署在他们的决策,交易和行为中必须具有认知和认知。数字化的实体有权收集在其环境中生成的多结构数据,清洁和关键,以实时发射可行的见解。普通的工件和文章与技术驱动的实时数据捕获,存储,处理和发音的力量进行了数字化,连接和智能。数字化和数字化技术和工具在将原始数据转换为信息和知识方面派上用场。人工智能(AI)是最有效,最深刻和相关的技术范式,可以简化,简化和加快将批处理和流数据分流为有用知识的过程。边缘AI的开创性概念(替代边缘智能,设备数据处理等)是两种强大技术的融合:边缘计算和人工智能。
俄罗斯的全力罢工深受乌克兰的最初防守而感到沮丧。在乌克兰武装部队重新夺回领土之后,该部队分为两个阶段(春季和夏末/秋季2022年),战斗变成了第一次世界大战期间法国对抗的一场立场战争。冬季进攻(2022/2023),俄罗斯军队犯罪团伙试图扭转局面,显然遭受了巨大的损失。领土收益很小。
参考[1] Hou,Saihui等。“通过重新平衡来逐步学习统一的分类器。”CVPR2019。[3] Liu,Yaoyao,Bernt Schiele和Qianru Sun。“用于课堂学习学习的自适应聚合网络。”CVPR 2021。[4]刘,Yaoyao,Bernt Schiele和Qianru Sun。“ RMM:用于课堂学习学习的增强记忆管理。”神经2021。[5] Rebuffi,Sylvestre-Alvise等。“ icarl:增量分类器和表示学习。”CVPR2017。[6] Li,Zhizhong和Derek Hoiem。“学习而不会忘记。”TPAMI2017。
软机器人利用合规的材料以灵活的方式与复杂和不确定的环境相互作用,从而可以操纵脆弱的物体并与生物的安全相互作用。它们的适应性推动了医学和制造等领域的创新。设计软机器人即使对于经验丰富的设计师,由于其非线性材料,多物理耦合,多个身体与环境之间的复杂相互作用及其许多自由度,即使对于经验丰富的设计师来说也很具有挑战性。这解释了为什么软机器人技术中的第一批设计受到自然的启发,模仿了诸如蠕虫或章鱼之类的软动物。软体能够符合硬对象并重新配置DI FF任务,然后将控制的重要部分委派给身体。与刚性机器人不同,体现的智能仍然是软机器人技术中的新兴话题。但是,很明显,可以很好地适应其环境的代理商可以快速学习智能行为。本文摆脱了传统的训练控制和敏捷性的关注,旨在通过将人工智能与软机器人设计联系起来来应对控制挑战。软机器人技术领域在建模,控制和设计方面提出了许多挑战。Inria Lille的除霜团队已经开发了几种有限元方法(FEM)的工具来应对这些挑战,从而可以准确地模拟软机器人。这些工具已用于低级控制,并在制造前评估了软机器人设计。此探索需要解决一些挑战。在这项工作中,应用了各种基于FEM的仿真和数值优化工具来探索软机器人的计算设计。设计空间必须非常大,才能探索相关的设计,但也受到了足够的限制,以使优化问题可以解决。开发相关的数学适应性功能对于准确评估软机器人设计的性能和效果至关重要。鉴于计算设计算法的重要数据要求和准确模拟的计算费用,我们旨在通过选择平衡计算时间和准确性的模型或使用学习技术来加速FEM模拟来加快模拟的速度。本论文探讨了软机器人的计算设计,重点是对数值结果的模拟到真实性。解决了两个参数软操作器的设计优化,一个具有嵌入式传感器,另一个具有自动接触功能。随着控制任务,环境和设计空间变得更加复杂,计算负担增加。这激发了从FEM模拟中学到的替代模型的发展,以表征软机器人的设计和控制。通过各种情况证明了该模型的适用性,特别是对气动操纵器的嵌入式控制和软操作器的计算设计。此外,这项工作的一个关键目标是开发工具以选择软机器人设计和控制。
摘要:镍基高温合金具有优异的耐腐蚀和耐高温性能,在能源和航空航天工业中广受欢迎。镍合金的直接金属沉积 (DMD) 已达到技术成熟度,可用于多种应用,尤其是涡轮机械部件的修复。然而,DMD 工艺过程中的零件质量和缺陷形成问题仍然存在。激光重熔可以有效地预防和修复金属增材制造 (AM) 过程中的缺陷;然而,很少有研究关注这方面的数值建模和实验工艺参数优化。因此,本研究的目的是通过数值模拟和实验分析来研究确定重熔工艺参数的效果,以优化 DMD 零件修复的工业工艺链。热传导模型分析了 360 种不同的工艺条件,并将预测的熔体几何形状与流体流动模型和选定参考条件下的实验单轨观测值进行了比较。随后,将重熔工艺应用于演示修复案例。结果表明,模型可以很好地预测熔池形状,优化的重熔工艺提高了基体和 DMD 材料之间的结合质量。因此,DMD 部件制造和修复工艺可以从此处开发的重熔步骤中受益。
最近已经证明了Terahertz(THz)发射量子级联激光(QCL)梳子的全相控制,即使是最苛刻的应用,也为新的视角开辟了新的观点。在此框架中,简化控制这些设备的设置将有助于加速其在许多领域的传播。这项研究报告了一种使用非常简单的实验设置来控制THZ QCL梳子的发射频率的新方法,从而利用了普通的白色光发射二极管的不相干发射。在这些条件下可访问的略有扰动式允许调整半导体的复杂折射率,而不会破坏宽带激光增益。软执行器的表征并与另一个执行器(QCL驱动电流)进行了比较。显示了这种额外的自由度对于频率和thz QCL梳子的相位稳定的适用性,并讨论了观点。
●对于电磁波●红移 - 当光从观察者移开时,明显的频率会降低,增加波长,从而将光转向频谱的可见光部分红色。●蓝移 - 当光向观察者移动时,表观频率会增加,减小波长,从而将光向蓝色移动。● When a source of light and an observer are moving relative to each other, the observed wavelength of light differs from the actual wavelength of light ● When a light wave is emitted by a source fixed in the moving inertial frame S', the observer in S sees the wavelength measured in S' to be shorter by a factor of sqrt(1 - v 2 / c 2 ) ● Because the observer sees the source moving away within s,在S中到达观察者的波模式也由因子1 + V / c伸展。●组合效应由:< / div>给出:< / div>
对政府设施和实验室的需求•持续支持Admatel和AMCEN•建立米沙ya和棉兰老岛的辐射设施,以满足该地区的行业领域的需求,需要人力资源的行业•对STEM课程,行业和消费者的启动方案的启动和培训•提高对全球范围的研究人员的跨越范围,以提高对STEM课程的启用和培训的范围•在国外培训范围的范围•需要和开放渠道的协作渠道(例如实习,沉浸式)•介绍针对光学和光子学的有针对性的培训选修选修课,以促进某些行业应用的毕业生的就业准备•BALIK Scientist计划巩固资源,领导R&D领域的领域和协作工作•改善劳动力的劳动力准备工作,以与跨性伙伴的开发和伙伴的构建和伙伴的能力•技术及以上的伙伴•技术研究•技术研究•技术研究•技术研究•技术研究,•研发应用和基础设施共同开发实体•路径中心研发项目:THZ测量半导体和航空航天设备的质量保证(2022-2024)S&T政策计划•确保对政府政策奖励和利益的交流,以使利益方面的利益和利益与利益相关者实习,沉浸式)•介绍针对光学和光子学的有针对性的培训选修选修课,以促进某些行业应用的毕业生的就业准备•BALIK Scientist计划巩固资源,领导R&D领域的领域和协作工作•改善劳动力的劳动力准备工作,以与跨性伙伴的开发和伙伴的构建和伙伴的能力•技术及以上的伙伴•技术研究•技术研究•技术研究•技术研究•技术研究,•研发应用和基础设施共同开发实体•路径中心研发项目:THZ测量半导体和航空航天设备的质量保证(2022-2024)S&T政策计划•确保对政府政策奖励和利益的交流,以使利益方面的利益和利益与利益相关者