添加性制造的晶格结构的设计和优化:晶格结构提供了许多理想的特性,例如轻质和良好的热性能。由于其多孔性质以及促进组织与小梁结构融合的能力,它们在生物医学植入物中也是非常可取的。Optistruct具有独特的解决方案,可以根据拓扑优化设计此类晶格结构。随后,可以在晶格束上进行大规模尺寸优化研究,同时结合了详细的性能目标,例如应力,屈曲,位移和频率。
航空航天业长期以来一直是新技术早期采用的潮流引领者,因为它努力应对监管和安全标准、高制造和运营成本以及全球竞争带来的挑战。近年来,减轻飞机重量以提高性能和降低燃料成本一直是航空航天工程工作的重点。航空航天业的主要供应商 SOGECLAIR 航空航天公司最近探索了一种发动机吊架的新概念,发动机吊架是将飞机发动机固定在机翼或机身的关键部件。他们的创新方法结合了使用 OptiStruct(Altair Engineering 的 HyperWorks 软件套件的一部分)的拓扑优化和增材层制造 (ALM)(也称为 3D 打印)。该项目的结果是重量减轻了 20%,部件数量减少了 97%,结构强度与传统结构一样强。
摘要 - 机翼是飞机期间为飞机产生必要升降机的飞机的结构组件。当流动通过机翼时,压力差会在上部和下表面上发生,这是产生升力的原因。皮瓣会在起飞和着陆期间影响飞机的性能。这项研究旨在使用Al -2024,碳纤维(Hexcel AS4C)和石墨烯在襟翼上分析飞机机翼,而无需更改机翼的性质。由于碳纤维是一种轻巧的材料,石墨烯是一种自我修复材料,因此可以在襟翼中互相代替,并且可以确定结构特性以确定哪种材料是最好的。在这项研究工作中,使用先前的结果进行验证;进行了参考模型的结构分析,并将其与参考文件中的数据进行了比较,以验证研究工作。在CATIA V5中对带有两个翼梁和5个肋骨的机翼进行了建模,CATIA V5使用HyperMesh OptiStruct在数值和结构上进行了分析。对建模的机翼进行了数值分析,以了解作用在机翼和襟翼上的压力。将这种压力作为静态分析中的载荷给出,并且皮瓣的材料特性变化,使机翼常数的材料特性保持。与其他两种材料相比,石墨烯材料的位移和应变较小。因此,与其他两种材料相比,石墨烯可用于襟翼。