摘要。光学超表面已成为光子学的一项突破性技术,它利用超薄表面纳米结构在亚波长尺度上对光 - 物质相互作用提供无与伦比的控制,从而催生了平面光学。虽然大多数已报道的光学超表面都是静态的,具有由制造过程中设定的成分和配置决定的明确定义的光学响应,但通过施加热、电或光刺激具有可重构功能的动态光学超表面的需求越来越大,并成为研究和开发的前沿。在各种类型的动态控制超表面中,电可调光学超表面因其响应时间快、功耗低和与现有电子控制系统兼容而显示出巨大的前景,为通过电调制动态可调光 - 物质相互作用提供了独特的可能性。在这里,我们全面概述了在这个快速发展的领域中探索的最先进的设计方法和技术。我们的工作深入研究了电调制的基本原理、实现可调性的各种材料和机制以及主动光场操纵的代表性应用,包括光振幅和相位调制器、可调偏振光学器件和波长滤波器以及动态波整形光学器件(包括全息图和显示器)。本综述以我们对电触发光学超表面未来发展的看法结束。
在光学介质中,电荷保守性要求在某个位置诱导的光场诱导的电荷密度增加,始终伴随着另一个位置的减少,导致无净宏观诱导的电荷密度。因此,宏观光学场的ρIND¼0和ρ总¼ρext。相比之下,在光学介质中可以存在诱导的J IND6¼0的宏观电流密度。在不含外部源的光学介质中,JExt¼0和ρ总计¼ρeven¼0,但是J总¼J结合了Jcond¼jcond¼jind6¼0:j bound和j bond cond is t is j bound和j cond is t is t to to to optical field均应诱导电流。边界电子极化电流j结合是一个位移电流,始终包含在∂d=∂t项中,但在(1.5)中的J项中不包含。传导电流J Cond也是诱导的电流,但它是由介质中的自由电荷载体携带的。在不存在外部电流和外部电荷的情况下,麦克斯韦方程的形式取决于如何处理传导电流。通常有两种选择。
1材料与可持续发展实验室(M2D),大学Bouira,1000,阿尔及利亚,阿尔及利亚2号,贝加亚大学技术学院环境工程实验室,06000 Bejaia,Algeria 3实验室,Algeria 3实验室3材料和催化剂的物理学化学,bejia 000 000,BEJIA,BEJIA,BEJIA,BEJIA,bejia 000,物理化学分析(CRAPC),Bou-ismaïl42004,Tipaza,Algeria 5实验室材料,能源,水和环境的过程。Faculty of Science and Technology, University of Bouira, 10000 Bouira, Algeria 6 University of Rennes, National School of Rennes chemistry, CNRS, ISCR - UMR6226, 35000 Rennes, France 7 Laboratory E2lim (Eau Environnement Limoges), University of Limoges, 123 avenue Albert Thomas, 87060 Limoges, France 8 Center for Energy and Environmental Materials, Ho Chi Minh,越南700000,基本和应用科学研究所,900000,环境与化学工程学院,Duy Tan University,Duy Tan University,Da Nang,550000,越南10自然资源的管理和估值和质量保证。SNVST教师,大学,Bouira 10000,阿尔及利亚SNVST教师,大学,Bouira 10000,阿尔及利亚
阅读障碍是一种学习障碍,会影响阅读,写作和咒语的能力。患有阅读障碍的人可能难以清晰,流利和理解。已经证明,使用光学特征识别(OCR)技术使阅读障碍的人更容易阅读。在这项工作中,我们描述了一种Android软件,该软件可帮助患有阅读障碍的人通过使用OCR技术更加流利地阅读。该程序使用相机收集文本图像,然后使用OCR算法将其转换为数字格式。然后,数字文本以文本到语音功能以及可自定义的字体样式和颜色显示在屏幕上。通过用户测试,确定了应用程序的有效性,结果表明它可以帮助阅读障碍者更快,准确地阅读。通过给他们一种促进更轻松,更深入阅读的工具,本研究中描述的Android软件有可能极大地提高阅读障碍患者的生活质量
摘要:(1)背景:创伤性脑损伤(TBI)导致死亡和终生残疾率。评估TBI的两个主要生物标志物是颅内压(ICP)和脑氧合。使用独立技术对两者进行评估,其中只能利用侵入性技术评估ICP。这项研究的动机是开发用于ICP和脑氧合的非侵入性光学多模式监测技术,这将使TBI患者有效管理。(2)方法:设计和制造了多波长的光学传感器,以根据从脑反向散射光中检测到的脉动和非型信号来评估这两个参数。该探针由四个LED和三个光探测器组成,它们测量了来自脑组织的光摄影学(PPG)和近红外光谱(NIRS)信号。(3)结果:旨在详细描述了旨在获取这些光学信号的仪器系统以及对传感器和仪器的严格技术评估。基准测试证明了电子电路的正确性能,而信号质量评估显示了所有波长的良好指标,远端光电探测器的信号是最高质量的。该系统在规范中表现良好,并从头部幻影记录了良好的脉动,并根据预期提供了非脉动信号。(4)结论:这种发展为有效评估TBI患者的多模式非侵入性工具铺平了道路。
生物聚合物是有前途的材料,如果其低机械和生物活性特性都得到改善,则可以在骨骼替代应用中广泛使用。在这方面,这项研究的主要目的是改善机械和生物学特性,除了改善光学和电气特性以适合于裂缝愈合目的使用。因此,在这项研究中,将一批聚(乙烯基醇; PVA)和生物学提取的羟基磷灰石(BHA)机械地以(70:30 vol。%)为准。然后,将氧化镁(MGO)和碳化硅(SIC)添加到该批次中,其体积百分比不同,在120°C时加热。测量了物理,机械,光学和电气性能。此外,通过将它们浸入模拟的体液(SBF)中,然后通过扫描电子显微镜(SEM)进行检查,从而评估了这些样品在其表面上形成磷灰石层的能力。获得的结果澄清说,由于这些添加剂的添加剂,改善了微度,压缩强度,Young的模量,纵向模量,纵向模量,大量模量和剪切模量的机械性能。也观察到,BHA和MGO纳米颗粒的存在增强了准备样品的生物活性,光学和电性能。获得的结果令人鼓舞,这项研究的目的已成功实现。
通过替换h = 6.626 x 10 -34 js,c = 3 x10 8 ms -2和λmax= 0.7 x 10 -6 m e g(min)= 2.84 x 10 -19 j(or)1.8 eV的结果表明,所有可见光都被那些具有频带隙能量的半径差异少于1.8 ev所吸收的。因此,这些半导体是不透明的。在外部半导体中,受体和供体杂质的存在会产生新的能级受体水平(E A)(P型半导体)和供体水平(E D)(N型半导体),如图所示。这些杂质水平位于材料的带隙内。特定波长的光辐射可能是由于带间隙内的电子杂质水平或到这些杂质水平的结果所吸收的。4.6。电荷注入和辐射重组电子和孔可以以多种方式注入传导和价带中。光入射在材料上和光子的吸收上会产生电子孔对。我们还在P-N二极管中使用外部电池偏置也注入电子和孔。电子和孔将彼此重新组合,而导带中的电子将返回到价带。可以在两个过程中进行此重组过程。它们是(i)辐射过程和(ii)非辐射过程。在辐射过程中,E-H对重组和光子发出。这是光子吸收过程的倒数。电子孔对也可以重组而不会发光。相反,它们可能会发出(i)热量或(ii)光子或(iii)长波长光子与光子一起发出。这样的过程是非辐射过程。当电子和孔被泵入半导体中时,它们通过自发发射过程重组。此过程不需要光子来进行光子发射过程。自发重组率对于电子和光电设备都非常重要。载体注射的类型(i)少数载体注射,如果N >> P和样品大量掺杂的N型重组率与孔密度成正比。因此,重组率与少数载体密度成正比(孔中的孔)(ii)强注射
关于光学无线实践 1.0 为激励和鼓励学生探索光学无线系统、下一代天线和光学无线应用的重要性,电子与通信工程系正在组织“光学无线实践 1.0”国家级竞赛。竞赛面向工程院校的本科生。该活动在技术上与 MWTC 俱乐部、EC 系和 IETE 苏拉特分中心合作。本次活动的目的是激励和鼓励学生探索无线通信系统、子系统和组件设计和性能分析对下一代无线应用的重要性。竞赛旨在为学生提供一个平台,让他们提交有关光学无线系统的想法及其在商业化中的应用。确定分析系统性能的新方法。
佛罗里达州,32816-2450 摘要 — 我们的项目旨在通过提供一个交互式平台,直观地展示棋盘上每个棋子的移动,从而为新手棋手提供学习和游戏体验。我们的创新设计适合两个不熟悉国际象棋的人,无需外部指导,让玩家能够直接参与游戏。我们设计的核心是集成在棋子底座中的照明系统。选择棋子后,无论游戏状态如何,它可以移动的相应方格都会亮起。此功能依赖于红外 (IR) 光通过底座上专门设计的滤光片的传输,由光电二极管检测。然后,这些光电二极管与微控制器通信,激活棋盘上相应的 RGB LED。通过直观地指示可能的移动,我们的系统加速了玩家的学习曲线,使他们能够快速轻松地掌握每个棋子的动态。这种沉浸式方法不仅可以教育玩家,还可以增强游戏过程中的乐趣。我们的项目利用光子技术与现有的电子棋盘区分开来,提供无缝、快捷的游戏体验,同时保留传统象棋的固有品质。