计划委员会:罗斯 - 霍尔曼理工学院(美国)霍斯辛·阿利萨法伊(Hossein Alisafaee); John P. Deegan,Rochester Precision Optics,LLC(美国);里克·菲茨帕特里克(Rick Fitzpatrick),挤满了有限责任公司(美国); Marcel Friedrichs,Fraunhofer-InstitutfürProduktionStechnologieIPT(德国); Ulf Geyer,Auer Lighting GmbH(德国); Panasonic生产工程有限公司Koji Handa(美国); Sai K. Kode,Micro-Lam,Inc。(美国); Oscar M. Lechuga,Fresnel Technologies Inc.(美国); Chris Morgan,Moore Nanotechnology Systems,LLC(美国); Panasonic生产工程有限公司Tomofumi Morishita(日本); J. David Musgraves,Musgraves Consulting(美国);吉姆·奥尔森(Jim Olson),Syntec Optics(美国);迈克尔·舒布(Michael P. Schaub),元(美国); Ulrike Schulz,Fraunhofer-InstitutfürAngewandteoptik und feinmechanik iof(德国);汉密尔顿·谢泼德三世(Hamilton Shepard III),Waymo,LLC(美国); Jan-Helge Staasmeyer,Leica Camera AG(德国)
在这项研究中,提出了确定性的远程准备方案,用于通过Borras等人提出的国家制备的七个Qubit纠缠的通道来制备任意两Q Qubited状态。(2007)。任何量子通信协议的实施本质上容易受到量子噪声的影响,这对量子通信系统的可靠性和安全性提出了挑战。引入噪声会导致从纯量子状态到混合量子状态的过渡。本文研究了六个不同的噪声模型,包括位叉噪声,相叉噪声,位叉噪声,振幅阻尼,相阻尼和去极化噪声,并分析其对纠缠通道的影响。评估了引入噪声引起的密度矩阵的变化。还分析了原始和远程量子状态之间的保真度,并在视觉上表示。此外,还进行了彻底的安全分析,以证明协议对内部和外部攻击的鲁棒性。
我们生活在一个信息爆炸和数字革命的时代,这导致了生活不同方面的技术快速发展。人工智能(AI)在这场数字化转型中发挥着越来越重要的作用。AI应用需要具有低延迟连接的边缘云计算,而其中最大的挑战是它需要大量的计算机处理能力。最近,基于光学硬件的AI实现[1-5]因其从根本上降低功耗和加快计算速度而成为热门话题。另一方面,作为现代电信和数据通信的基础,光网络变得越来越复杂,数据和连接越来越多。生成、传输和恢复如此大容量的数据需要具有高性能、高成本和高功耗效率的先进信号处理和网络技术。AI对于表现出复杂行为的系统的优化和性能预测特别有用[6-20]。在这方面,传统的信号处理算法可能不如AI算法高效。人工智能方法近期已进入光学领域,涉及量子力学、纳米光子学、光通信和光网络。特刊旨在将光学和人工智能结合起来,以应对各自面临的难以单独解决的挑战。特刊精选了 12 篇论文,代表了光学和人工智能相结合领域令人着迷的进展,从光子神经网络 (NN) 架构 [5] 到人工智能在光通信中的进展,包括物理层收发器信号处理 [10-17] 和网络层性能监控 [18,19],以及人工智能在量子通信中的潜在作用 [20]。光子神经网络架构:石斌等人提出了一种基于广播和权重方法的新型光子加速器架构,通过光子集成交叉连接实现深度 NN [5]。测试了一个用于图像分类的三层 NN,结果表明每个光子神经层都可以达到高于 85% 的准确率。它为设计可扩展到更高维度的光子 NN 以解决更高复杂度的问题提供了见解。正如书中所反映的那样,人工智能的应用,尤其是机器学习在光通信领域的应用更受欢迎。在物理收发器层,讨论最多的话题是使用机器学习来减轻从短距离到长距离应用的光通信系统中的各种线性和非线性影响。用于短距离光通信的人工智能:对于短距离可见光通信,陈晨等人引入了一种概率贝叶斯学习算法来补偿发光二极管
光学、光学技术和光子学为解决 21 世纪社会当前和未来的重大挑战提供了不可或缺的关键技术。因此,PTB 的光学部门将其研究和开发任务调整为能够最有效地利用这些关键技术用于未来的计量服务。PTB 的光学部门将其研究、开发和服务任务集中在长度和尺寸计量、辐射测量和光度测量以及时间和频率领域的计量上。该部门实现了国际单位制 (SI) 的三个基本单位坎德拉、米和秒(与这三个领域相对应),并将它们及其派生单位以足够的不确定度传播给客户。自 2013 年初以来,该部门根据以下四个部门组织工作:光度测定和应用辐射测量、成像和波动光学、长度单位和量子光学以及时间和频率。此外,在 PTB 成立了 QUEST 研究所,隶属于汉诺威莱布尼茨大学量子工程和时空研究卓越集群中心。下面,我们将介绍去年光学部门和 PTB QUEST 研究所四个部门取得的重要成果和特殊发展。