IYOG名称认可了玻璃在几个世纪和文化中扮演的关键角色,从古埃及艺术到当今互联网的光纤电缆中的硅胶玻璃。联合国指定了2022年IYOG,其中包括一支包括Creol Pegasus教授凯瑟琳·理查森(Kathleen Richardson)的团队的请愿书,该团队实际上也发表了会议演讲,“看到和感知未来:由红外玻璃创新启用。”她的言论涵盖了红外玻璃的历史发展及其在质量教育,性别平等,气候行动以及可持续城市和社区等方面的2030年可持续发展目标(SDG)的潜力。
摘要 全量子信号处理技术是大多数信息量子技术成功发展的核心。本文开发了连贯而全面的方法和数学模型,以全量子术语描述任何输入光量子态的傅里叶光信号处理。本文首先介绍光子的空间二维量子态,该量子态与其波前相关,可表示为二维创建算子。然后,通过将傅里叶光学处理装置分解为其关键组件,我们努力获得二维创建算子的量子幺正变换或输入/输出量子关系。随后,我们利用上述结果开发并获得一些基本傅里叶光学装置的量子类似物,例如通过 4f 处理系统的量子卷积和具有周期性瞳孔的量子 4f 处理系统。此外,由于光脉冲整形在各种光通信和光学科学领域的重要性和广泛应用,我们还提出了一个全量子术语的类似系统,即具有 8f 处理系统的量子脉冲整形。最后,我们将结果应用于光量子态的两个极端示例。一个基于相干(Glauber)状态,另一个基于上述每个光学系统的单光子数(Fock)状态。我们相信本文开发的方案和数学模型可以影响量子光信号处理、量子全息术、量子通信、量子雷达和多输入/多输出天线的许多领域,以及量子成像、量子计算和量子机器学习算法中的更多应用。
伊莎贝尔·古德女士 网络空间方法论和任务保证部门负责人 伊莎贝尔·古德女士目前担任 DEVCOM 分析中心网络实验和分析部门的四位部门负责人之一。1990 年,她在漏洞分析实验室开始了她的公务员生涯,该实验室后来重组为陆军研究实验室 (ARL) 的一部分。古德女士领导了多个地雷/反地雷项目,此外还负责一个涉及红外诱饵的特殊项目。她的工作成果发表在 NDIA 地面战车生存能力研讨会、老乌鸦协会联合电子战会议和国际光学和光子学学会的论文集上。 1998 年,Goode 女士接受了横向任务,担任位于亚利桑那州尤马市尤马试验场的 ATEC 测试官,在那里她为弹药和武器部门开展了高知名度项目,到 2000 年,她被提升为炮兵和特殊项目部门负责人,例如 M777 轻型榴弹炮、M109 圣骑士和 M982 圣剑制导炮弹。2016 年,Goode 女士重返 ARL,担任网络电子保护部门部门负责人,至今她在 DEVCOM 分析中心担任该职务。除了部门负责人职责外,Goode 女士还领导其部门的人才管理计划和网络分析与评估中心(与 UTEP 合作),该中心为高需求的网络安全专业人员提供人才渠道。Goode 女士还担任与 UTEP、新墨西哥州立大学物理科学实验室和 SUGPIAT 国防集团签订的 3 份数百万美元合同的合同官代表。 Goode 女士获得的奖项包括西班牙裔工程师国家军事/专业成就奖(2004 年)、民事服务指挥官奖(2008 年)和民事服务成就奖章(2010 年)。Goode 女士获得了德克萨斯大学埃尔帕索分校电气和电子工程理学学士学位。她是陆军采购部队的成员,拥有测试和评估三级认证。她和孩子 James(22 岁)和 Jocelyn(16 岁)住在埃尔帕索。
X射线的有效聚焦对于高分辨率X射线显微镜至关重要。称为运动型的衍射X射线光学在理论上提供了最高的焦点效率。但是,由于它们的纳米制作,它们长期以来一直无法使用。最近,使用3D激光光刻在近红外波长下实现了包括运动型在内的各种X射线光学几何形状。由于运动型的最小特征(周期)决定了解决能力,因此有一种自然的动力来寻找用较小特征的kino形式制造的kino形式。在这里,使用具有405 nm的激发波长的定制3D激光光刻设置,与以前的工作相比,它允许将运动型的最小时期一半。在扫描传输X射线显微镜图像分辨率方面提高了40%,即145 nm的截止分辨率,在700 eV时效率为7.6%。通过磁性样品的PtyChographic Imageing证明了一个重建的像素大小为18.5 nm,达到了显微镜设置的设计极限,该磁性样品的对比度强烈降低。此外,由405 nm 3D激光光刻制造的X射线镜头有可能比其他手段制成的X射线镜头便宜得多。
OSE 6445 (3 Credits) Time: Tuesday, Thursday 3:00-4:15 Place: CREOL A214 Instructor: P. J. Delfyett, CREOL A-231, (407) 823-6812, delfyett@creol.ucf.edu Office Hours : Open door policy or from 1:30-3:00pm Tuesdays and Thursdays; RM A-231还可以,如果我有空,可以随时安排缩放会议。网络课程:每个学生都必须在课程的第一周结束前完成网络课程的作业。课程目标:让学生在开发和使用picsecond and flstsecond Photonic Technologies进行科学和商业应用的领域中熟练理解最先进的技术文献(即科学期刊出版物)。学生的学习成果:成功的学生将能够在分析和计算上分析超短脉冲传播,生成,测量系统。课程描述:入门概念(以下是了解超快光信号的生成,传输,检测和操纵所需的必要基本数量)。
摘要。罗彻斯特大学 (UR) 的量子光学/量子信息和纳米光学教育实验室设施 (QNOL) 位于光学研究所的三个房间内,总面积为 587 平方英尺。15 年来,它每年用于教授 4 学分的 QNOL 课程。准备了四个教学实验室,用于产生和表征纠缠和单个(反聚束)光子,展示量子力学定律:(1) 纠缠和贝尔不等式,(2) 单光子干涉(杨氏双缝实验和马赫-曾德干涉仪),(3) 单光子源 I:单个纳米发射器的共焦荧光显微镜,以及 (4) 单光子源 II:汉伯里布朗和特威斯装置,荧光反聚束。此外,基于 QNOL,开发了 1.5 到 3 小时的坚固量子“迷你实验室”,并引入必修课程,以便 UR 的所有光学专业学生都拥有使用量子实验室的经验。门罗社区学院 (MCC) 的学生参加了 UR 的两个迷你实验室。自 2006 年到 2022 年春季,共有约 850 名学生使用实验室提交实验报告(包括 144 名 MCC 学生),超过 250 名学生使用它们进行实验室演示。此外,UR 新生研究项目已成为该设施中一项非常重要的教育活动。所有开发的材料和学生报告均可在 http://www.optics.rochester.edu/workgroups/lukishova/QuantumOpticsLab/ 获得。我们介绍了坚固耐用、普遍可及的实验,这些实验可以引入单独的高级课程或有大量学生的课程。讨论了评估方法、学生知识评估以及他们对量子信息职业的态度。© 2022 光学仪器工程师协会 (SPIE) [DOI: 10.1117/1.OE.61.8.081811]
令人惊讶的是,最近的研究表明,纠缠这种传统上被认为是量子独有的不可分离特征也可以存在于经典光场中 [1-10]。随着量子概念和经典光学之间的模拟分析越来越多,人们越来越关注经典光纠缠领域。经典光中的量子模拟概念已被证明能够违反贝尔不等式 [2],改进偏振的测量和量化 [3,4],控制基本的波粒二象性 [5,6],模拟简单的量子任务 [7-9] 等。这些令人鼓舞的结果表明,经典纠缠光可以作为一个物理平台,用于教学基本的量子概念,甚至展示简单量子信息和计算任务的实现。这里我们提出利用经典光束的张量结构来引入矢量空间、叠加、角动量、相干性、纠缠、干涉、量子比特类似物、量子信息等量子概念。光束包含三个主要自由度 (DOF),即偏振、空间特性和时间特性,一般可以描述为
团队专注于原子、分子和光学物理领域的前沿研究,包括但不限于量子光学-原子光学和量子计量学。已发展了原子和光的量子调控、量子关联干涉、量子增强传感和超越传统技术的精密测量等多个研究方向。该团队正在与华东师范大学和上海交通大学联合组建。目前,团队由 5 名教授、3 名副教授、2 名助理教授和 4 名博士后组成,其中包括 1 名国家杰出青年科学基金获得者等。此外,还获得过饶玉泰物理学奖、上海市自然科学奖一等奖等多项奖项。