近年来,提高绿色能源的使用率以满足日益增长的能源需求和应对全球变暖已成为各国的重要目标之一。因此,将可再生能源整合为分布式发电变得越来越流行。在本研究中,为土耳其代尼兹利省萨拉伊科伊区一个 100 户家庭的电气化设计了混合可再生能源系统,并使用电力可再生能源混合优化模型程序来优化所需的组件输出,以实现最佳的经济和环境效果。共创建了六种混合可再生能源系统设计,三种并网和三种独立系统,这些系统采用了光伏板、风力涡轮机、柴油发电机、电池储能系统和转换器等不同组件的组合。最经济的设计是仅使用太阳能的并网系统,单位能源成本为 0.0362 美元/千瓦时,而最具成本效益的是包含太阳能、风能和电池的独立系统,成本为 1.61 美元/千瓦时。从环境角度来说,离网系统恰恰相反,排放的二氧化碳较少,而并网系统排放的二氧化碳较多。
最近,引入了一种新颖的实空间重正化群 (RG) 算法。通过最大化信息论量,即实空间互信息,该算法可确定相关的低能自由度。受此启发,我们研究了平移不变系统和无序系统的粗粒化程序的信息论性质。我们证明,完美的实空间互信息粗粒化不会增加重正化汉密尔顿量中的相互作用范围,并且对于无序系统,它会抑制重正化无序分布中相关性的产生,从这个意义上讲是最优的。我们通过对干净随机的伊辛链进行任意粗粒化,通过经验验证了这些复杂性度量作为 RG 保留信息的函数的衰减。结果建立了 RG 作为压缩方案的性质与物理对象(即汉密尔顿量和无序分布)性质之间的直接且可量化的联系。我们还研究了约束对通用 RG 程序中粗粒度自由度的数量和类型的影响。
如何开发精简而准确的深度神经网络对于实际应用至关重要,尤其是对于嵌入式系统中的应用。尽管之前沿着该研究方向的工作已经显示出一些有希望的结果,但是大多数现有方法要么无法显著压缩训练有素的深度网络,要么需要对修剪后的深度网络进行大量再训练才能重新提高其预测性能。在本文中,我们提出了一种新的深度神经网络分层修剪方法。在我们提出的方法中,每个单独层的参数都基于相应参数的分层误差函数的二阶导数独立地进行修剪。我们证明,修剪后最终的预测性能下降受每层造成的重构误差的线性组合限制。通过适当控制分层误差,只需对修剪后的网络进行轻度再训练即可恢复其原始的预测性能。我们在基准数据集上进行了大量实验,以证明我们的修剪方法与几种最先进的基线方法相比的有效性。我们的工作代码发布在:https://github.com/csyhhu/L-OBS 。
量子机学习模型与其经典同行相比,有可能提供加速和更好的预测精度。然而,这些量子算法与它们的经典算法一样,也已被证明也很容易受到输入扰动的影响,尤其是对于分类问题。这些可能是由于嘈杂的实现而引起的,也可以作为最坏的噪声类型的对抗性攻击。为了开发防御机制并更好地理解这些算法的可靠性,在存在自然噪声源或对抗性操纵的情况下了解其稳健性至关重要。从量子分类算法涉及的测量值是自然概率的,我们发现并形式化了二进制量子假设测试与可证明可证明可靠的量子分类之间的基本联系。此链接导致紧密的鲁棒性条件,该条件对分类器可以忍受的噪声量构成约束,而与噪声源是自然的还是对抗性的。基于此结果,我们开发了实用协议以最佳证明鲁棒性。最后,由于这是针对最坏情况类型的噪声类型的鲁棒条件,因此我们的结果自然扩展到已知噪声源的场景。因此,我们还提供了一个框架来研究量子分类方案的可靠性,超出了对抗性,最坏情况的噪声场景。
最佳运输,也称为运输理论或Wasserstein指标,是一个数学框架,它解决了找到最有效的方法将质量或资源从一个分布转移到另一种分布的最有效方法的问题,同时最大程度地减少了一定的成本函数[1,2,3]。最初在18世纪作为物流和经济学工具开发,最佳运输在现代数学和各种科学学科(包括计算机科学和机器学习)上引起了极大的关注。在其核心方面,最佳运输旨在通过找到将一个分布的质量重新分配以匹配另一个位置的成本,从而量化两个概率分布之间的相似性。这个优雅而多才多艺的概念在不同领域中发现了从图像处理和数据分析到经济学[11]和神经科学的应用,使其成为具有广泛含义的强大而统一的数学工具[12]。
具有 13 个条目的 Dict{String,Any}:“source_type”=>“matpower” “name”=>“pglib_opf_case5_pjm” “source_version”=> v“2.0.0” “baseMVA”=> 100.0 “per_unit”=> true “bus”=> Dict{String,Any}(...) “branch”=> Dict{String,Any}(...) “dcline”=> Dict{String,Any}(...) “gen”=> Dict{String,Any}(...) “load”=> Dict{String,Any}(...) “shunt”=> Dict{String,Any}(...) “storage”=> Dict{String,Any}(...)
我们考虑深度神经网络 (DNN) 在具有挑战性的一次性/后训练环境中的模型压缩问题,在该环境中,我们获得了一个经过精确训练的模型,并且必须仅基于少量校准输入数据对其进行压缩,而无需进行任何重新训练。鉴于新兴的软件和硬件支持通过加速剪枝和/或量化来执行压缩模型,这个问题变得很普遍,并且已经针对这两种压缩方法分别提出了性能良好的解决方案。在本文中,我们介绍了一种新的压缩框架,该框架在统一的环境中涵盖权重剪枝和量化,具有时间和空间效率,并且大大提高了现有后训练方法的实际性能。在技术层面,我们的方法基于 [LeCun、Denker 和 Solla,1990] 的经典最佳脑外科医生 (OBS) 框架的精确和高效实现,该框架扩展到还涵盖现代 DNN 规模的权重量化。从实际角度来看,我们的实验结果表明,它可以显著改善现有后训练方法的压缩-准确度权衡,并且可以在后训练环境中实现修剪和量化的准确复合应用。
惯性质量,J 101 537 . 5 kg m 2 阻尼,B 100 N ms / rad 极对数,p 2 变速箱速比,N 24 . 12 叶片长度 + 轮毂,R m 13 . 5 m 转子电阻,R r 0 . 007 645 44 Ω 转子电感,L r 0 . 007 067 33 H 定子电阻,R s 0 . 009 585 76 Ω 定子电感,L s 0 . 000 252 35 H 定子电流。 d 轴,isdisd ≥ 0 A 定子频率,ω s ω s ≥ 0 rad / s 初始转子频率,ω r 0 2 rad / s 转子频率,ω r ω r ∈ [ 0 , 9 . 208 ] rad / s 直流母线电压,vv ∈ [ 437 , 483 ] V (460 V ± 5%) 直流母线电阻,R 1000 Ω 直流母线电容,C 0 . 1 F 连接电感,L 0 . 001 H 连接电阻,R 0 . 05 Ω 时间窗口 600 s 直流母线电压,vv ′′ ∈ [ − 20 , 20 ] V / s 2
Layton,D。“ Chatgpt - 我们如何到达今天的位置 - GPT开发的时间表。” https://medium.com/@dlaytonj2/chatgpt-how-we-we-got-to-wher-we-we-are-today-a-timeline-timeline-fppt-development-f7a35dcc660e(2023)。Lubbad,M。“ GPT-4参数:无限制指南NLP的游戏规则改变者。”https://mlubbad.medium.com/the-ultimate-guide-to-gpt-4-parameters-verything-nything-to-to-to-to-to-to-about-about-about-about-about-about-nlps-changer-changer-109b87678555a(2023)。Shree,P。“开放AI GPT模型的旅程。”https://medium.com/walmartglobaltech/the-journey-open-open-ai-gpt-models-32d95b7b7fb2(2020)。
本文定义了一种使用AI来增强人类智能的新方法,以解决最佳目标。我们提出的AI Indigo是通过质量优化进行的,是构成态度的缩写。与人类合作者结合使用时,我们将联合系统Indigovx称为虚拟专家。系统在概念上很简单。我们设想将这种方法应用于游戏或业务策略,人类提供战略环境和AI提供最佳,数据驱动的动作。Indigo通过迭代反馈循环运作,利用人类专家的上下文知识以及AI的数据驱动的见解,以制定和完善策略,以实现明确定义的目标。使用量化的三分学模式,这种杂交使联合团队能够评估策略并完善计划,同时适应实时的挑战和变化。