子宫颈的摘要癌是一个全球问题,近距离放射治疗是用于治疗此类癌症患者的主要放射治疗成分之一。随着治疗计划中的科学和技术发展的出现,有必要在近距离放射治疗中进行反相反的优化,并与传统的手动优化方法进行了彻底的比较。在这项工作中,物理参数;分别使用D 98和D 90代表的目标体积的最低剂量为98%和90%,用于评估相对于目标的治疗计划,而2厘米3卷(d 2cm 3)收到的最低剂量用于研究处于风险的器官的并发症。使用的符合性指数硬币用于描述按规定的剂量和每个器官的分数,每个器官处于接收临界剂量的风险量,这可能会导致并发症。还根据无放射生物学参数并发症控制概率P +进行了治疗计划评估。与同源手动图形优化计划进行了比较,与两种近距离抗体抗体计划算法相对应的物理和放射生物学评估。这项研究的主要观察结果是,反相反优化方法的良好调整类解决方案可能与手动图形优化计划产生的剂量体积直方图产生相似的剂量量直方图,并且反向方法有可能避免有风险的机器人,同时为目标提供可接受的剂量。此外,放射生物学索引(例如P +)可以对治疗计划评估中的物理参数有用。Elekta Leksell GammaKnife®单位已成功用于颅内恶性肿瘤的管理已有半个多世纪。根据国家和国际法规的要求,为了保护患者,工人,公众和环境,必须通过电离辐射工具构成的风险有足够的知识。从这个角度来看,斯德哥尔摩大学物理系(斯德哥尔摩,瑞典)的核物理研究小组与Elekta Instrument AB(瑞典斯德哥尔摩,瑞典)合作进行了调查,对使用高纯度德国人(Hpge)gamma刀的辐射场进行了调查。作为正在进行的研究的一部分,本工作的主要目的是改善伽马刀周围的辐射场的建模和表征,以询问国家辐射保护与测量委员会(NCRP)方法论对Leksell Gamma刀具治疗室的结构屏蔽设计和评估的功效。在Gamma刀 - 完美TM领域中获得高分辨率γ射线光谱和环境剂量等效H*(10)发生在萝洛林斯卡大学医院(瑞典)(瑞典)Neurosurgery(肿瘤学系)神经外科(肿瘤学系)。分别利用了P型同轴HPGE检测器和卫星测量表来获取γ射线光谱和H*(10)。在Pegasos Monte Carlo系统上模拟了测得的配置。圆柱表面上的一个相空间用敞开的门封闭了伽马刀,并且组装的幻影被用作辐射的来源。在对应于2·10 12衰变的相空间上收集了约4·10 7γ光子。在打开伽马刀门的情况下,大多数辐射是在向前方向上测量的,相对于Z轴,沿向前的方向至θ= 45 O。蒙特卡洛模拟重现了测得的结果;因此,在响应测量和模拟光谱之间实现了良好的一致性。最近的Gamma刀模型Perfexion TM,Icon TM和Esprit TM
AS/RS(自动存储和检索系统)是一个具有质量的存储和运输系统,可以通过自动化产品的可容纳和存储产品来实现有效的仓库管理。自动化具有诸如降低人工成本和工作时间,改善工作质量以及准确管理库存差异的优点(Roodbergen&Vis,2009年)。但是,从自动仓库中挑选效率会受到货架上放置的产品位置的影响,如果效率很差,它将成为整个运输过程中的瓶颈。为了提高采摘效率,应将具有较高频率的产品放置在检索端口附近。或,如果您使用的是两叉式起重机,则有必要将架子彼此靠近,以便可能同时检索的产品。这些问题被总体视为放置优化问题。设施布局问题在各种现实世界中起着至关重要的作用。它涉及在给定的资源和约束下优化多个元素或对象的布置。例外包括设施安置(De Vries,Van de Klundert和Wagelmans,2020年),交付路线优化(Aljohani,2023年)和工厂布局设计(Li,Wang,Fan,Yu,Yu,&Chu,2021年)。解决设施的布局问题提供了几种好处
摘要 本文探讨了人工智能 (AI) 在提高可再生能源系统效率和功能方面的变革性作用,重点关注太阳能和风能优化。太阳能和风能作为全球能源转型的关键参与者,不仅对环境有益,而且具有社会变革性,为服务不足的社区提供负担得起的能源解决方案。例如,巴基斯坦的低收入家庭越来越多地采用太阳能,因为与传统能源相比,太阳能价格更便宜(亚洲开发银行 [ADB],2022 年)。本文重点介绍了预测性维护、能源产出优化和与能源存储集成等人工智能应用,强调了它们提高可再生能源系统可靠性和可持续性的潜力。具体的例子包括人工智能驱动的太阳能电池板跟踪系统将效率提高 20%(麻省理工学院 [MIT],2021 年),谷歌的 DeepMind 提前 36 小时预测风力发电量,将价值提高 20%(谷歌,2019 年),丹麦风电场利用人工智能优化布局,实现能源产量增加 12%(丹麦技术大学,2020 年)。这项研究强调了人工智能不仅在推动技术创新方面发挥的作用,而且在解决全球能源不平等方面也发挥着作用。
摘要:人工智能在日常生活中的应用变得无处不在且不可避免。在那个广阔的领域,一个特殊的位置属于用于多参数优化的仿生/生物启发的算法,该算法在许多区域中找到了它们的使用。新颖的方法和进步正在以加速速度发表。因此,尽管事实上有很多调查和评论,但它们很快就变得过时了。因此,与当前的发展保持同步非常重要。在这篇综述中,我们首先考虑了生物启发的多参数优化方法的可能分类,因为专门针对该领域的论文相对较少,而且通常是矛盾的。我们通过详细描述一些更突出的方法以及最近发表的方法来进行。最后,我们考虑在两个相关的宽域中使用仿生算法的使用,即微电子(包括电路设计优化)和纳米光子学(包括诸如光子晶体,纳米质体的构造和水流的结构的逆设计(包括逆设计)。我们试图保持这项广泛的调查独立,以便不仅可以使用相关领域的学者,还可以使用对这个有吸引力领域的最新发展感兴趣的所有人。
将人工智能融入停车管理具有巨大的潜力,可以优化停车位的分配,缓解交通拥堵,提高城市交通系统的整体效率。通过利用机器学习、计算机视觉和预测分析等人工智能技术,城市可以创建动态停车解决方案,以适应实时需求并为驾驶员提供个性化服务。这些人工智能驱动的方法不仅可以优化停车位,还可以通过最大限度地减少不必要的车辆移动和排放来减少城市交通对环境的影响。随着城市寻求应对出行挑战的可持续解决方案,人工智能在改变停车管理方面的作用变得越来越重要[3]。
在日常环境中使用物联网(IoT)传感器和设备的压倒性用途(房屋,医院,酒店,制造地板,仓库,零售店,机场,智能城市等。),如今,实时感知和驱动的长期目标是看到一个宏伟的现实。环境和自适应通信技术可以实现特定特定和不可知论的物联网产品,解决方案和服务的快速增长领域。可以建立并交付给相关人员和系统的跨业务垂直行业的各种情境知识服务和应用程序。多方面的物联网传感器嵌入到各种物理系统中,例如机器人,无人机,飞行引擎,防御设备,医疗器械,电器,厨房用具,消费电子,消费电子,货车,制造机械等。进行此填充是为了不断地监视和测量物理系统的各种参数(日志,结构,操作,健康状况,绩效,安全性等)。IoT设备和传感器部署在工作,散步,购物,社交和放松的地方是连接和数字化的实体。目标是使这些设备和传感器能够在其操作,输出和产品方面具有智能。这些要素在我们的个人,社会和专业环境中大量部署在他们的决策,交易和行为中必须具有认知和认知。数字化的实体有权收集在其环境中生成的多结构数据,清洁和关键,以实时发射可行的见解。普通的工件和文章与技术驱动的实时数据捕获,存储,处理和发音的力量进行了数字化,连接和智能。数字化和数字化技术和工具在将原始数据转换为信息和知识方面派上用场。人工智能(AI)是最有效,最深刻和相关的技术范式,可以简化,简化和加快将批处理和流数据分流为有用知识的过程。边缘AI的开创性概念(替代边缘智能,设备数据处理等)是两种强大技术的融合:边缘计算和人工智能。
[2] S. M. Thompson,L。Bian,N。Shamsaei和A. Yadollahi,“添加剂制造的直接激光沉积概述;第一部分:运输现象,建模和诊断,” Addive Manufacturing,第1卷。8,pp。36-62,2015年10月。[3] V. T. Le,H。Paris和G. Mandil,“使用增材和减法制造技术的直接零件再利用策略的制定”,《增材制造》,第1卷。22,pp。687-699,2018年8月。[4] V. T. Le,H。Paris和G. Mandil,“在再制造环境中合并添加剂和减法制造技术的过程计划”,《制造系统杂志》,第1卷。44,否。1,pp。243-254,2017年7月。[5] A. Ramalho,T。G. Santos,B。Bevans,Z。Smoqi,P。Rao和J. P. Oliveira,“污染对316L不锈钢线和ARC添加性生产过程中声学发射的影响”,Addived Manufacturing,第1卷。51,第1条。102585,2022年3月。[6] S. Li,J。Y. Li,Z。W. Jiang,Y。Cheng,Y。Z. Li,S。Tang等人,“控制Inconel 625的定向能量沉积期间的柱状到等式的过渡”,Addy Manufacturing,第1卷。57,第1条。102958,2022年9月。[7] T. A. Rodrigues,N。Bairrão,F。W。C. Farias,A。Shamsolhodaei,J。Shen,J。Shen,N。Zhou等人,“由Twin-Wire和Arc添加剂制造(T-WAAM)生产的钢 - Copper功能渐变的材料(T-WAAM)”,材料&Designs,第1卷。213,第1条。110270,2022年1月。66,否。8,pp。1565-1580,2022年8月。32,否。[8] V. T. Le,D。S. Mai,M。C. Bui,K。Wasmer,V。A. Nguyen,D。M. Dinh等,“过程参数和热周期的影响,对308L不锈钢墙的质量,该材料由添加剂生产产生的308L不锈钢墙,使用弧形焊接来源,使用弧形焊接源,焊接,焊接,焊接,”。[9] D. Jafari,T。H。J. Vaneker和I. Gibson,“电线和电弧添加剂制造:控制制造零件的质量和准确性的机遇和挑战”,《材料与设计》,第1卷。202,第1条。109471,2021年4月。[10] S. W. Williams,F。Martina,A。C. Addison,J。Ding,G。Pardal和P. Colegrove,“ Wire + Arc添加剂制造”,《材料科学与技术》,第1卷。7,pp。641-647,2016。[11] W. E. Frazier,“金属添加剂制造:评论”,《材料工程与性能杂志》,第1卷。23,否。6,pp。1917-1928,2014年6月。[12] J. Xiong,Y。Li,R。Li和Z. Yin,“过程参数对基于GMAW的添加剂制造中多层单频薄壁零件的表面粗糙度的影响”,《材料加工技术杂志》,第1卷。252,pp。128-136,2018年2月。[13] V. T. Le,“基于气体弧焊接的金属零件添加剂制造的初步研究”,VNUHCM科学技术杂志,第1卷。23,否。1,pp。422-429,2020年2月。58,否。4,pp。461-472,2020年7月。[15] W. Jin,C。Zhang,S。Jin,Y。Tian,D。Wellmann和W. Liu,“不锈钢的电弧添加剂制造:审查”,《应用科学》,第1卷。[14] V. T. Le,Q。H。Hoang,V。C. Tran,D。S. Mai,D。M. Dinh和T. K. Doan,“焊接电流对由薄壁低碳构建的形状和微观结构形成的影响,由电线添加剂制造建造的薄壁低碳零件”,《越南科学和技术杂志》,第1卷。10,否。5,第1条。1563,2020年3月。[16] T. A. Rodrigues,V。Duarte,J。A. Avila,T。G。Santos,R。M。Miranda和J. P. Oliveira,“ HSLA钢的电线和弧添加剂制造:热循环对微结构和机械性能的影响”,《增材制造》,第1卷。27,pp。440-450,2019年5月。[17] J. G. Lopes,C。M。Machado,V。R。Duarte,T。A。Rodrigues,T。G。Santos和J. P. Oliveira,“铣削参数对电线和弧添加剂生产产生的HSLA钢零件的影响(WAAM)”,《制造工艺杂志》,第1卷。59,pp。739-749,2020年11月。[18] A. V. Nemani,M。Ghaffari和A. Nasiri,“通过传统滚动与电线弧添加剂制造制造的船建造钢板的微观结构特性和机械性能的比较,”添加剂制造业,第1卷。32,第1条。101086,2020年3月。[19] P. Dirisu,S。Ganguly,A。Mehmanparast,F。Martina和S. Williams,“对线 +电线 + ARC添加剂生产的高强度高强度低合金结构钢组件的裂缝韧性分析”,材料科学与工程:A,第1卷,第1卷。765,第1条。138285,2019年9月。787,第1条。139514,2020年6月。[20] L. Sun,F。Jiang,R。Huang,D。Yuan,C。Guo和J. Wang,“各向异性机械性能和低碳高强度钢分量由Wired and Arc添加剂制造制造的低强度钢组件的变形行为”,材料科学和工程学:A,A,第1卷。[21] https://doi.org/10.1007/s11665-022-06784-7
软机器人利用合规的材料以灵活的方式与复杂和不确定的环境相互作用,从而可以操纵脆弱的物体并与生物的安全相互作用。它们的适应性推动了医学和制造等领域的创新。设计软机器人即使对于经验丰富的设计师,由于其非线性材料,多物理耦合,多个身体与环境之间的复杂相互作用及其许多自由度,即使对于经验丰富的设计师来说也很具有挑战性。这解释了为什么软机器人技术中的第一批设计受到自然的启发,模仿了诸如蠕虫或章鱼之类的软动物。软体能够符合硬对象并重新配置DI FF任务,然后将控制的重要部分委派给身体。与刚性机器人不同,体现的智能仍然是软机器人技术中的新兴话题。但是,很明显,可以很好地适应其环境的代理商可以快速学习智能行为。本文摆脱了传统的训练控制和敏捷性的关注,旨在通过将人工智能与软机器人设计联系起来来应对控制挑战。软机器人技术领域在建模,控制和设计方面提出了许多挑战。Inria Lille的除霜团队已经开发了几种有限元方法(FEM)的工具来应对这些挑战,从而可以准确地模拟软机器人。这些工具已用于低级控制,并在制造前评估了软机器人设计。此探索需要解决一些挑战。在这项工作中,应用了各种基于FEM的仿真和数值优化工具来探索软机器人的计算设计。设计空间必须非常大,才能探索相关的设计,但也受到了足够的限制,以使优化问题可以解决。开发相关的数学适应性功能对于准确评估软机器人设计的性能和效果至关重要。鉴于计算设计算法的重要数据要求和准确模拟的计算费用,我们旨在通过选择平衡计算时间和准确性的模型或使用学习技术来加速FEM模拟来加快模拟的速度。本论文探讨了软机器人的计算设计,重点是对数值结果的模拟到真实性。解决了两个参数软操作器的设计优化,一个具有嵌入式传感器,另一个具有自动接触功能。随着控制任务,环境和设计空间变得更加复杂,计算负担增加。这激发了从FEM模拟中学到的替代模型的发展,以表征软机器人的设计和控制。通过各种情况证明了该模型的适用性,特别是对气动操纵器的嵌入式控制和软操作器的计算设计。此外,这项工作的一个关键目标是开发工具以选择软机器人设计和控制。
扩散模型代表文本到图像生成中的新范式。除了从文本提示中生成高质量的图像之外,诸如稳定扩散之类的模型已成功扩展到了共同生成的分段伪遮罩。但是,当前的敏感主要依赖于提取与用于图像合成的及时单词相关的关注。这种方法限制了从文本提示中未包含的单词代币中得出的分割掩码的产生。在这项工作中,我们介绍了开放式摄影注意力图(OVAM) - 用于文本到图像扩散模型的无训练方法,可为任何单词生成注意力图。此外,我们提出了一个基于OVAM的轻巧优化过程,用于查找具有单个注释的对象类的准确注意图。
6 Iterative Algorithms for Linearly Constrained Optimization Problems 127 6.1 The Problem, Solution Concepts, and the Special Environment 128 6.1.1 ~ The problem 128 6.1.2 Approaches and solution concepts 128 6.1.3 The special computational environment 131 6.2 Row-Action Methods , 131 6.3 Bregman's Algorithm for Inequality Constrained Problems 133 6.4 Algorithm for Interval-Constrained Problems 142 6.5标准最小化的行算法147 6.5.1 kaczmarz的算法147 6.5.2 Hildreth的算法148 6.5.3 ART4 -NORM Minimigation