如何引用这篇文章 - 美国心理学会 (APA) Santos, GC, Barboza, F., Veiga, ACP, & Gomes, K 。 (2024 年 7 月/9 月)。利用人工智能进行投资组合优化
这项研究深入研究了人工智能(AI)和机器学习(ML)的应用,以优化和管理现代通信网络。随着数据流量的指数增长以及网络体系结构的增加,网络管理和优化的传统方法证明是不足的。AI和ML提供了新颖的方法来通过实现智能,自适应和自动化网络解决方案来应对这些挑战。该研究探讨了各种AI和ML技术,包括受监督和无监督的学习,强化学习和深度学习,及其在交通预测,资源分配,故障检测和自我修复网络中的应用。它还解决了AI/ML算法与网络管理系统的集成,研究了与可扩展性,实时处理和安全性有关的问题。通过模拟和现实世界案例研究,该研究表明了AI和ML提高网络性能,降低运营成本并提高整体服务质量的潜力。这项工作强调了AI和ML对网络优化和管理的变革性影响,强调了它们在下一代通信网络发展中的关键作用。
6 Iterative Algorithms for Linearly Constrained Optimization Problems 127 6.1 The Problem, Solution Concepts, and the Special Environment 128 6.1.1 ~ The problem 128 6.1.2 Approaches and solution concepts 128 6.1.3 The special computational environment 131 6.2 Row-Action Methods , 131 6.3 Bregman's Algorithm for Inequality Constrained Problems 133 6.4 Algorithm for Interval-Constrained Problems 142 6.5标准最小化的行算法147 6.5.1 kaczmarz的算法147 6.5.2 Hildreth的算法148 6.5.3 ART4 -NORM Minimigation
在聚合酶链反应(PCR)技术中,通过一系列由三个温度依赖性步骤组成的聚合循环在体外扩增DNA:DNA变性,引物 - 板板退火和DNA合成,由热稳定DNA聚合酶。反应产物的纯度和产量取决于几个参数,其中之一是退火温度(T。)。在亚和超级最佳的TA值下,可以形成非特异性产物,并降低产物的产量。合成长产物或总基因组DNA是PCR的底物时,优化T。特别关键。在本文中,我们通过实验确定了几个引物 - 板对的最佳退火温度(TAOPT)值,并开发了一种计算方法。发现TAOPT是较不稳定的引物 - 板对和产品的熔化温度的函数。实验和计算的t,OPT值同意在0.70℃以内的事实消除了实验确定拖曳的需求。DNA片段的合成短于1 kb,因此在每个连续循环中TA较高。
年龄(年)71.7±10.8性别(女性 /男性)%8(40%) /12(60%)MAS-ul 1.25(0-6)FMA-UL 51(29-66)脂肪5(1-5)MBI 94(1-5)MBI 94(46-100)平均±标准偏差; n(%);中值(最小值最小)。修改后的Ashworth Scale-upper肢体(MAS-ul); FUGL-MEYER评估 - Upper肢体(FMA-ul);法式手臂测试(FAT);和修改的Barthel指数(MBI)。
将人工智能融入停车管理具有巨大的潜力,可以优化停车位的分配,缓解交通拥堵,提高城市交通系统的整体效率。通过利用机器学习、计算机视觉和预测分析等人工智能技术,城市可以创建动态停车解决方案,以适应实时需求并为驾驶员提供个性化服务。这些人工智能驱动的方法不仅可以优化停车位,还可以通过最大限度地减少不必要的车辆移动和排放来减少城市交通对环境的影响。随着城市寻求应对出行挑战的可持续解决方案,人工智能在改变停车管理方面的作用变得越来越重要[3]。
摘要:人工智能在日常生活中的应用变得无处不在且不可避免。在那个广阔的领域,一个特殊的位置属于用于多参数优化的仿生/生物启发的算法,该算法在许多区域中找到了它们的使用。新颖的方法和进步正在以加速速度发表。因此,尽管事实上有很多调查和评论,但它们很快就变得过时了。因此,与当前的发展保持同步非常重要。在这篇综述中,我们首先考虑了生物启发的多参数优化方法的可能分类,因为专门针对该领域的论文相对较少,而且通常是矛盾的。我们通过详细描述一些更突出的方法以及最近发表的方法来进行。最后,我们考虑在两个相关的宽域中使用仿生算法的使用,即微电子(包括电路设计优化)和纳米光子学(包括诸如光子晶体,纳米质体的构造和水流的结构的逆设计(包括逆设计)。我们试图保持这项广泛的调查独立,以便不仅可以使用相关领域的学者,还可以使用对这个有吸引力领域的最新发展感兴趣的所有人。
摘要 — 在三相四线低压配电系统中,不平衡负载会导致中性电流 (NC) 形成环路,从而导致功率损耗增加和中性电位变化。与传统电力变压器相比,智能变压器 (ST) 具有严格的电流限制以避免过流。然而,其在下游低压电网电压调节方面的优势可以提供调节过度 NC 的能力。本文提出了一种闭环 NC 优化控制,一方面,在满足标准 EN 50160 要求的正常运行中最小化 NC 电流,另一方面,在极端情况下抑制 NC 电流以避免 ST 过流损坏。根据曼彻斯特地区三相四线配电网,通过硬件在环设置和基于不平衡负载曲线下的 350kVA、10kV/400V、ST 供电配电网的案例研究,通过实验测试验证了所提出的控制策略。结果清楚地证明了所提出的NC优化控制策略对NC抑制和最小化的有效性和灵活性。
反复试验在机器学习中起着重要作用。当模型发现其预测与实际数据集之间存在错误或差异时,它会尝试纠正其思维,使其预测接近实际情况。这个过程通常称为“训练模型”。实际数据集被分成训练集和验证集,通常按 90/10 的比例分配,其中 90% 用于训练,10% 用于验证其预测或错误率。这时,数据科学家可能会更改模型应该从中学习的特征,例如价格、产品、位置和/或模型的参数;这些是训练期间学习的训练数据集的属性。通常,参数是模型自行学习并在试图降低其预测错误率时自动调整的东西。