为了克服能源挑战,Wit 与当地光伏和储能集成商 ENDUSO 洽谈潜在的合作。随后,ENDUSO 联系了定制能源系统 - CES(前身为 ATEPS Nederland BV),经过良好的合作,配置了一个满足 Wit 特定需求的系统。计算表明,两个系统(每个系统为 1.1MWh 和 1MW)不仅可以解决 Wit 的能源短缺问题,而且还可以通过欧洲电力交易所 (EPEX) 在能源过剩或能源短缺时交易能源来创造收入。ENDUSO 和 Wit 为这些能源业务组建了一个新的独立商业实体,部分收益将捐给当地社区。第一个系统于 2021 年底订购,并于 2022 年 4 月交付。安装非常简单,因为这些系统与简单的电网连接相连,而通信则通过 4G 连接实现;因此,不需要复杂的安全预防措施。
必须通过进步,更大的能源效率,浪费和排放管理和捕获,低碳电气化和清洁燃料来解决工业,建筑和运输部门内部的环境可持续性策略。运输部门占全球二氧化碳(CO 2)排放量的五分之一,但随着人口的增长,需求的预期增长可能会导致排放量的增加。技术创新和向降低碳电源的转变可以帮助抵消需求的增长。使用锂离子电池供电的从燃烧引擎到电动汽车的过渡是实现全球脱碳目标的关键推动力。
重组腺相关病毒(RAAV)是用于传递遗传信息的最深入研究和最广泛使用的载体之一。但是,将遗传货物向受体细胞有效地转移需要高矢量剂量。质粒DNA(pDNA)是用于制造Raav的关键原料。可以生产的病毒滴度取决于辅助,包装和转移质粒转染的细胞数量以及其生物学活性。因此,对优化质粒的高级疗法需求的开发和应用表现出较高的生物学活性,可以以高质量和数量生产。这些原材料的可用性和负担能力反过来要求高性能生产过程,这些过程的特征是高产品滴度,质粒DNA纯度和可伸缩性。这些特征受到靶质粒的特定序列的影响,尤其是那些对RAAV功能至关重要的序列。Wacker开发了一个专有的饲料批次工艺,该过程最佳地支持了质膜菌株的生长,并允许最佳的质粒复制。此过程允许在高特异性滴度和高纯度下进行可扩展的质粒DNA(包括关键的RAAV制造原材料)的可扩展生产和隔离。使用此过程,我们开发了特定的DNA序列,从而进一步提高了靶质粒的生产率,从而降低了制造成本。并行,我们筛选替代质粒结构,以提高其转染效率和包装细胞系中的生物学活性。结合了由此产生的技术,我们开发了专有质粒,可以进一步促进RAAV制造。具有其生产力,灵活性和可扩展性,Plasmitec®制造平台提供了高质量且负担得起的原材料,因此是开发和应用高级疗法的宝贵促进者。
在启动应用程序或设备时,用户可以保证环境尚未被恶意或其他方式更改?确保环境的完整性和机密性至关重要,尤其是在不在完全控制和安全的环境中的系统中。设备的完整性确保其数据是准确的,并且没有被恶意药物篡改,从而保护信息内容。在这种情况下,有必要使用证明环境保持安全状态的机制。tpms对于确保计算系统的完整性和可信度至关重要。他们使用对称密钥方案和消息验证代码(MAC)验证了硬件和软件组件的真实性。此外,TPM支持使用公共密钥加密算法,以允许受信任的第三方评估和比较不同设备的完整性。此过程对于防止运营失败,财务损失,服务中断和安全风险至关重要,突出了TPMS在维持系统完整性和安全性中的关键作用。
你必须能够上网,将关键信息传回云端,返回美国本土,对其进行处理,更新 MDF,然后重新投入战斗。因此,在 CDOL 环境中,这些事情变得非常具有挑战性。因此,我们研究如何解决这一问题的方法实际上是实现连接方法的弹性和冗余。这是你的步调计划的一部分。同样,当你在那个主要作战基地时,你可能已经拥有了光纤基础设施,拥有了 nipper、sipper,以及你今天享受的所有方式。你可能已经上线了 5G 功能,这有助于解决部分问题。但是,当你转移到其他一些有争议的地区时,你开始将步调计划稍微放慢一些,转向一些替代方法。
钢 (SS) 与 AISI 400 系列马氏体不锈钢 (参考文献 10、11) 相似,但它仍然非常出色,并且可以采用任何常见的电弧、电阻或高能量密度焊接工艺进行焊接。无需预热 (参考文献 12-I 6) 或 PWHT 来防止开裂或恢复延展性 (参考文献 10、1 [ ])。在这种材料中,由于微观结构中存在残余奥氏体 (参考文献 12),紧邻熔合区的热影响区 (HAZ) 可以通过焊接加热和冷却循环 (参考文献 12、15、17) 有效地退火或软化。因此,这种材料可以在时效条件下焊接而不会产生裂纹(参考文献 11、15),因为焊接热量会导致 HAZ 局部软化(参考文献 12)。此外,在固溶处理 (ST) 条件下焊接不会导致固溶处理结构出现明显的沉淀硬化,因为焊接期间的加热时间太短(参考文献 12、14、15)。对于焊接 17-4 PH SS,通常首选匹配成分或低强度高延展性不锈钢的填充金属和电极(参考文献 1、11、15、16)。用匹配填充金属制成的焊件可以时效到与母材相当的强度水平,并用于生产高强度焊件。但是,如果允许较低的强度水平,则可以使用奥氏体不锈钢焊接金属。
终端设备 (EE)(例如机顶盒 (STB)、智能扬声器、电子仪表等)需要成本和空间均经过优化的电源路径保护设计。传统设计由分立元件(例如 MOSFET、保险丝、PTC、齐纳二极管、电阻器、电容器等)组成,用于打开和关闭电源轨。这些设计虽然简单,但通常在物理和电气上尺寸过大,并且可能缺乏保护功能。相比之下,带有集成 FET 的电子保险丝(例如 TPS25961)可以提供类似的功能,同时提供额外的系统优势,包括浪涌电流限制和更小的设计尺寸。本应用简介重点介绍了使用 TPS25961 相对于分立设计的优势。TPS25961 是一款 19 V 2 A 电子保险丝,采用 2 mm × 2 mm 封装,具有过压、过流和短路保护功能。该设备非常适合个人电子产品和工业电源路径保护趋势,这些趋势要求设计具有宽电压范围支持、最低 20 V 绝对最大值支持以承受瞬变和小于 2 A 的电流限制支持。
摘要——本研究的目的是通过使 EEG 置信度解码器最佳地适应群体组成来最大化群体决策表现。我们训练线性支持向量机从人类参与者的 EEG 活动中估计他们的决策信心。然后,我们使用加权多数规则组合个人决策来模拟不同规模和成员的群体。分配给组中每个参与者的权重是通过解决小维度、混合、整数线性规划问题来选择的,其中我们最大化训练集上的群体表现。因此,我们引入了优化的协作式脑机接口 (BCI),其中每个团队成员的决策都根据个人神经活动和群体组成进行加权。我们在 10 名人类参与者执行的人脸识别任务上验证了这种方法。结果表明,最佳协作式 BCI 比其他 BCI 显著提高了团队绩效,同时提高了群体内的公平性。这项研究为协作式 BCI 在以稳定团队为特征的现实场景中的实际应用铺平了道路,在这些场景中,优化单个群体的决策政策可能会带来团队动态的长期显著效益。
抽象Z-DNA是一种替代的DNA的左手螺旋形式,具有锯齿形的主链,与右手规范的B-DNA螺旋不同。Z-DNA已与各种生物学过程有关,包括转录,复制和DNA修复,并可以诱导遗传不稳定性。交替的嘌呤和嘧啶的重复序列具有采用Z-DNA结构的潜力。Zseeker是一种开发的新型计算工具,用于准确检测基因组中潜在的Z-DNA形成序列,从而解决了先前方法的局限性。通过引入一种通过实验数据知情和验证的新方法,Zseeker可以很好地检测潜在的Z-DNA形成序列。同时构建了独立的Python软件包,又是可访问的Web界面,Zseeker允许用户通过可下载的可视化来输入基因组序列,调整检测参数并查看潜在的Z-DNA序列分布和Z分数。我们的Web平台提供了用于Z-DNA标识的无代码解决方案,重点是可访问性,用户友好性,速度和自定义性。通过提供有效的高通量分析和增强的检测准确性,Zseeker具有支持在理解Z-DNA在正常细胞功能,遗传不稳定性及其在人类疾病中的影响方面的作用方面的重大进步。可用性:Zseeker以GPL许可证作为多平台应用程序作为Python包发行,可在以下网址获得:https://github.com/georgakopoulos-soares-soares-lab/zseeker。Zseeker的Web-Interface可在https://zseeker.netlify.app/上公开获得。关键字:Z-DNA,算法设计,搜索工具,Web接口
摘要 为了支持量子计算的近期应用,一种新的计算范式——量子-经典云——已经出现,其中量子计算机(QPU)通过共享云基础设施与经典计算机(CPU)协同工作。在这项工作中,我们列举了量子-经典云平台的架构要求,并提出了一个用于对其运行时性能进行基准测试的框架。此外,我们还介绍了两个平台级增强功能,即参数编译和主动量子位重置,它们专门优化了量子-经典架构以支持变分混合算法,这是近期量子硬件最有前途的应用。最后,我们表明,将这两个功能集成到 Rigetti Quantum 云服务平台中可以显著改善控制算法运行时的延迟。