太阳能光伏 (PV) 是全球增长最快的可再生资源。然而,其全部潜力可能会因与市场需求和相关生产概况的不匹配而受到阻碍。在本研究中,我们使用两个瑞士电力系统的软链接优化模型,探索了阿尔卑斯山地区创新光伏布局的案例研究。使用 Swissmod(一种电力调度和负荷流模型)和 OREES(一种采用进化策略优化光伏布局的电力系统模型),我们根据多年的天气数据、各种二氧化碳价格并考虑未来欧洲电力基础设施的发展,模拟了优化光伏布局的市场价格。与低海拔光伏布局策略相比,山地布局具有更高的市场价值和更少的所需面积。更高的市场价值是由更好地与需求保持一致所驱动的,特别是在需求最高的冬季。我们发现,优化的高山布局提供的面板容量收入(欧元/千瓦/年)平均比城市光伏装置的收入高 20%。此外,瑞士山区可容纳超过 1 GW 的发电容量,收益甚至更高(33%)。阿尔卑斯山的光伏装置具有更高的市场价值和更高的价值因素,可能成为非常有利可图的投资,从系统角度来看也很有价值。© 2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
Kai Xiong, 1 Karen Julie la Cour Karottki, 1 Hooman Hefzi, 2,5 Songyuan Li, 1 Lise Marie Grav, 1 Shangzhong Li, 2,6 Philipp Spahn, 2,5 Jae Seong Lee, 3 Ildze Ventina, 1 Gyun Min Lee, 1,4 Nathan E. Lewis, 2,5,6 Helene Faustrup Kildegaard, 1 和 Lasse Ebdrup Pedersen 1,7,8,* 1 丹麦技术大学诺和诺德基金会生物可持续性中心,丹麦灵比 2 加州大学圣地亚哥分校诺和诺德基金会生物可持续性中心,美国加利福尼亚州拉霍亚 3 亚洲大学分子科学与技术系,韩国水原 16499 4 韩国科学技术研究院生物科学系,大田 5加州大学圣地亚哥分校儿科,美国加利福尼亚州拉霍亚 6 加州大学圣地亚哥分校生物工程系,美国加利福尼亚州拉霍亚 7 丹麦技术大学生物工程系,丹麦林比 8 主要联系人 *通信地址:laeb@dtu.dk https://doi.org/10.1016/j.crmeth.2021.100062
几十年来,已经使用了各种类型的各种类型的共形涂层,高可靠性电子系统和裸露的电子系统。但是,保护先进的电子产品比以往任何时候都更具挑战性。电子设备越来越多地在户外使用,并将其广泛合并到商业电子设备中,例如车辆和无处不在的通信基站。保形涂层的要求在当代系统中的俯仰和间距方面的要求也越来越大。这样的系统包括当今的高频设备;随着设备组件的近距离比以前更接近,因此出现了新的和日益增长的挑战,用于保形涂层。现有类型的保形涂层已被证明有时不符合室外使用的更严格的要求,其中可能包括高水分,极端温度,盐或腐蚀性工业气体载气条件。面临这些极端条件的电子产品的扩散需要一种新型的无压力保形涂层,具有较高的水分和腐蚀性气体阻滞能力,以提供保护并确保可靠性。
摘要 - 自治车辆是解决大多数运输问题的解决方案,例如安全性,舒适性和效率。转向控制是实现自动驾驶的主要重要任务之一。模型预测控制(MPC)是该任务的效果控制器之一,因为其最佳性能和处理约束的能力。本文提出了用于路径跟踪任务的自适应MPC控制器(AMPC),并提出了一种改进的PSO算法,以优化AMPC参数。使用查找表方法在线实现参数改编。通过模拟评估了提出的AMPC性能,并将其与经典的MPC和Pure Pursuit控制器进行了比较。索引项 - 自主车,优化,模型预控制,自适应控制,粒子群优化。
热键合(TSB)是一种模具到die的键合方法,它在粘结过程中将新型的热压缩键合与超声波(美国)焊接结合在一起,因此,在微电子粘结应用中使用了每种质量的最佳质量。最初,TSB主要用于电线键合技术[1]。我们引入的引入通过降低在半导体制造中非常有吸引力的施加的粘结压力和温度来增强键合过程。Flip-Chip键合是针对区域阵列连接的一种无焊的模具到die键合技术(图1)。该方法用于将ICS底部的一系列金色凸起(图2)连接到基板上的镀金垫上。通常使用热压缩键合法[2],这是一个简单,干净且干燥的组装过程。纯热压缩键合通常需要> 300°C的界面温度[2,3]。此温度会损坏包装材料,层压板和一些敏感的微芯片[4]。这种下一个级别的键合解决方案在翻转芯片键合中非常有利,因为界面温度和粘结力通常可以低得多。分别在100至160°C和20和50g/ bump之间[2]。
2023 年 3 月 16 日 — 太空作战指挥能力。全球通信。GEO。地球静止轨道。22,000 英里。连续最佳。地球覆盖。MILSTAR。
摘要。功率流控制系统在具有光伏输入的直流微电网中发挥着重要作用,可为负载提供连续电力。由于太阳辐射和温度的波动,光伏模块的输出功率可能会下降,因此必须使用电池和公用电网来减少不良变化的负面影响。然而,需要一种有效的控制策略来确保不间断地向负载单元供电。本文提出了一种基于库仑计数法的充电状态电池功率估计技术的改进能量流控制。通过使用充电状态技术准确估计电池的可用功率,微电网能够确定是否需要在光伏模块的功率输出不足以满足负载需求时切换到电网。所提出的方法还消除了基于直流总线电压水平的方法来对电池进行充电或放电的需要,具有显著减少直流总线电压变化的优点。该方法的仿真结果表明,该方法提供了令人满意的控制性能,满足了负载需求。
免责声明本文件是作为由美国政府机构赞助的工作的帐户准备的。美国政府和劳伦斯·利弗莫尔国家安全,有限责任公司,或其任何雇员均不对任何信息,设备,产品或流程的准确性,完整性或有用性承担任何法律责任或责任,或承担任何法律责任或责任,或者代表其使用不会侵犯私有权利。以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或Lawrence Livermore National Security,LLC的认可。本文所表达的作者的观点和意见不一定陈述或反映美国政府或劳伦斯·利弗莫尔国家安全,有限责任公司的观点和观点,不得用于广告或产品代表目的。
我们提出了一种方法,通过解决基于模型的最优控制问题,以经济高效的方式运行电解器以满足加氢站的需求。为了阐明潜在问题,我们首先对额定功率为 100 kW 的西门子 SILYZER 100 聚合物电解质膜电解器进行实验表征。我们进行实验以确定电解器的转换效率和热动力学以及电解器中使用的过载限制算法。得到的详细非线性模型用于设计实时最优控制器,然后在实际系统上实施。每分钟,控制器都会解决一个确定性的滚动时域问题,该问题旨在最大限度地降低满足给定氢气需求的成本,同时使用储罐来利用随时间变化的电价和光伏流入。我们在模拟中说明了我们的方法与文献中的其他方法相比显著降低了成本,然后通过在实际系统上实时运行演示来验证我们的方法。