这与“初始条件假设”相一致,该假设认为准备活动设定了动态系统的初始状态,然后演变为产生由初始状态部分定义的时空活动(28)。支持这一观点的是,在视觉和自愿试验中,刺激前和提示前活动状态分别在每次试验的基础上预测了运动过程中的后续群体活动(图 4C)。也许因此,我们 10
1. 基础电子学 2. 电子器件与电路 3. 数字电子学 4. 集成电路 5. 电子学基础 6. 消费电子 7. 半导体材料与电力器件 8. 基础物理学与辐射物理学 9. 辐射危害、防护与控制 10. 光学光学-I 11. 光学光学-II 12. 微电子技术 13. 电视与卫星通信 14. 光电子学
技术将继续以更快的速度发展,包括物联网*,这使一切都可以连接到互联网;大数据,分析和生成大量数据的新价值;以及AI,自动驾驶和EV,这得益于高级高速信息处理技术。具有新的汽车行业的一种新的社会工业结构即将来临。我们在全球范围内与领域的客户互动,例如非易失性内存,3D-IC,电信设备,传感器和光电设备,以开发创新的真空技术,并帮助客户实现开发和/或扩展生产。
2。用于HPC应用程序中的高级HDFO包装解决方案Lihong CAO-高级半导体工程公司Inc. Teck Lee -Advanced Semiconductor Engineering,Inc。Yungshun Chang -Advanced Semiconductor Engineering,Inconyl Huang Huang Huang Huang -semiconductor Engineering,Inc.先进的Semicon -inc. jy incorn -Incorn -Incorn -Incorn incormond conmond conmond杨 - 高级半导体工程公司3.非对比的3D -OPTO -MID软件包的可靠性,用于光总线耦合器Lukas Lorenz -Dresden Florian Hanesch技术大学 - DRESDEN KRZYSZTOF NIEWERED -NIEWERINGIAL -DRESDEN MOHENMENKER -KUREN -KUREN -KUREN -KURENMERMEN -NAMENKER- Au Erlangen -Nuremberg Gerd -Albert Hoffmann -Leibniz Hanover Ludger Overmeyer -Leibniz University -Leibniz University hanover Karlheinz Bock - 德累斯顿技术大学
-AOCS传感器和执行器(光学陀螺技术)。最后一次在2020年周期中进行了协调。- 痛苦的关键子系统。最后一次在2022年周期1.- 微型和纳米技术(光学开关和麦克托学)。最后一次在2020年周期中进行了协调。- 空间的光学通信(QKD,光终端)。在2022年周期2中进行了最后一致。- 烟火设备(用于发射器的Opto -Pyro)。最后一次在2020年周期中进行了协调。- 频率和时间产生和分布 - 空间和地面。在2023年周期2.- 机上计算机,数据处理系统和微电子(空间纤维)。最后一次在2021年周期1.- 阵列天线和周期结构。最后一次在2022年周期1.- PCB和电子组装技术。最后一次在2022年周期1.包含光子PCB。- 执行器的构建块(覆盖编码器)。在2021年周期2中进行了最后一致。
试卷名称 分数 第一学期 PHYC-101 数学物理 75 PHYC-102 经典力学 75 PHYC-103 量子力学-I 75 PHYC-104 电磁理论 75 实践 100 总计 400 第二学期 PHYC-201 原子和分子物理学 75 PHYC-202 凝聚态物理学 75 PHYC-203 量子力学-II 75 PHYC-204 电动力学和等离子体物理学 75 实践 100 总计 400 第三学期 PHYC-301 激光和光电子学 75 PHYC-302 核物理-I 75 特殊试卷 PHYC-303 (S) 电子学-I 75 PHYC-304 (S) 电子学-II 75 实践 100 总计 400第四学期 PHYC-401 统计力学 75 PHYC-402 核物理-II 75 专题试卷 PHYC-403 (S) 电子学-III 75 PHYC-404 (S) 电子学-IV 75 实践 100 总计 400
5。参考[1] V.G.Veselago,Sov。 物理。 USP。 10,509(1968)。 [2] R. Smith,N。Croll,物理。 修订版 Lett。 85,2933(2000)。 [3] R.W. Ziolkowski,E。Heyman,物理。 修订版 E.,64,056625(2001); R. A. Shelby,D。R.Smith,Schultz,Science 292,77(2001)。 [4]J。 B. Pennry,物理。 修订版 Lett。 85,3966(2000)。 [5] x。 NON-N。 d:应用。 物理。 42,045420(2009)。 [6] Z. Tong,H。Zhang和J. Yao,应用。 物理。 b 91,369(2008)。 [7]L。 Zhang,W。Qiao,Y。Zhao和G. Black,Opto。 Lett。 06,0207,(2010)。 [8]L。 Wang,H。Chhen,圣朱,信件 [9] d。祝福C. Wu,J。Opt。 Soc。 am。 B. 26,1506(2009)。 [10] e。 Cojocaru,Call in Call,113,227(2011)。 [11] y。 T. Fang和Z. C. Liang,Eur。 物理。 J. D 61,725(2011)。 [12] g。 I. Gallina,V。Galdi,Alu和N. Engheta,Phy。 修订版 B83,081105(R)(2011)。 [13] x。 Deng,J。Liu,J。Huang。 物理。 :条件。 Matter,22,055403(2010)。 [14]L。 Dong,G。Black,H。Jiang,H。Jiang,Shi,Jou B 26,1091(2009)。 物理。 rept。 68,449(2005)。Veselago,Sov。物理。USP。10,509(1968)。[2] R. Smith,N。Croll,物理。修订版Lett。 85,2933(2000)。 [3] R.W. Ziolkowski,E。Heyman,物理。 修订版 E.,64,056625(2001); R. A. Shelby,D。R.Smith,Schultz,Science 292,77(2001)。 [4]J。 B. Pennry,物理。 修订版 Lett。 85,3966(2000)。 [5] x。 NON-N。 d:应用。 物理。 42,045420(2009)。 [6] Z. Tong,H。Zhang和J. Yao,应用。 物理。 b 91,369(2008)。 [7]L。 Zhang,W。Qiao,Y。Zhao和G. Black,Opto。 Lett。 06,0207,(2010)。 [8]L。 Wang,H。Chhen,圣朱,信件 [9] d。祝福C. Wu,J。Opt。 Soc。 am。 B. 26,1506(2009)。 [10] e。 Cojocaru,Call in Call,113,227(2011)。 [11] y。 T. Fang和Z. C. Liang,Eur。 物理。 J. D 61,725(2011)。 [12] g。 I. Gallina,V。Galdi,Alu和N. Engheta,Phy。 修订版 B83,081105(R)(2011)。 [13] x。 Deng,J。Liu,J。Huang。 物理。 :条件。 Matter,22,055403(2010)。 [14]L。 Dong,G。Black,H。Jiang,H。Jiang,Shi,Jou B 26,1091(2009)。 物理。 rept。 68,449(2005)。Lett。85,2933(2000)。 [3] R.W. Ziolkowski,E。Heyman,物理。 修订版 E.,64,056625(2001); R. A. Shelby,D。R.Smith,Schultz,Science 292,77(2001)。 [4]J。 B. Pennry,物理。 修订版 Lett。 85,3966(2000)。 [5] x。 NON-N。 d:应用。 物理。 42,045420(2009)。 [6] Z. Tong,H。Zhang和J. Yao,应用。 物理。 b 91,369(2008)。 [7]L。 Zhang,W。Qiao,Y。Zhao和G. Black,Opto。 Lett。 06,0207,(2010)。 [8]L。 Wang,H。Chhen,圣朱,信件 [9] d。祝福C. Wu,J。Opt。 Soc。 am。 B. 26,1506(2009)。 [10] e。 Cojocaru,Call in Call,113,227(2011)。 [11] y。 T. Fang和Z. C. Liang,Eur。 物理。 J. D 61,725(2011)。 [12] g。 I. Gallina,V。Galdi,Alu和N. Engheta,Phy。 修订版 B83,081105(R)(2011)。 [13] x。 Deng,J。Liu,J。Huang。 物理。 :条件。 Matter,22,055403(2010)。 [14]L。 Dong,G。Black,H。Jiang,H。Jiang,Shi,Jou B 26,1091(2009)。 物理。 rept。 68,449(2005)。85,2933(2000)。[3] R.W.Ziolkowski,E。Heyman,物理。修订版E.,64,056625(2001); R. A. Shelby,D。R.Smith,Schultz,Science 292,77(2001)。[4]J。B. Pennry,物理。修订版Lett。 85,3966(2000)。 [5] x。 NON-N。 d:应用。 物理。 42,045420(2009)。 [6] Z. Tong,H。Zhang和J. Yao,应用。 物理。 b 91,369(2008)。 [7]L。 Zhang,W。Qiao,Y。Zhao和G. Black,Opto。 Lett。 06,0207,(2010)。 [8]L。 Wang,H。Chhen,圣朱,信件 [9] d。祝福C. Wu,J。Opt。 Soc。 am。 B. 26,1506(2009)。 [10] e。 Cojocaru,Call in Call,113,227(2011)。 [11] y。 T. Fang和Z. C. Liang,Eur。 物理。 J. D 61,725(2011)。 [12] g。 I. Gallina,V。Galdi,Alu和N. Engheta,Phy。 修订版 B83,081105(R)(2011)。 [13] x。 Deng,J。Liu,J。Huang。 物理。 :条件。 Matter,22,055403(2010)。 [14]L。 Dong,G。Black,H。Jiang,H。Jiang,Shi,Jou B 26,1091(2009)。 物理。 rept。 68,449(2005)。Lett。85,3966(2000)。 [5] x。 NON-N。 d:应用。 物理。 42,045420(2009)。 [6] Z. Tong,H。Zhang和J. Yao,应用。 物理。 b 91,369(2008)。 [7]L。 Zhang,W。Qiao,Y。Zhao和G. Black,Opto。 Lett。 06,0207,(2010)。 [8]L。 Wang,H。Chhen,圣朱,信件 [9] d。祝福C. Wu,J。Opt。 Soc。 am。 B. 26,1506(2009)。 [10] e。 Cojocaru,Call in Call,113,227(2011)。 [11] y。 T. Fang和Z. C. Liang,Eur。 物理。 J. D 61,725(2011)。 [12] g。 I. Gallina,V。Galdi,Alu和N. Engheta,Phy。 修订版 B83,081105(R)(2011)。 [13] x。 Deng,J。Liu,J。Huang。 物理。 :条件。 Matter,22,055403(2010)。 [14]L。 Dong,G。Black,H。Jiang,H。Jiang,Shi,Jou B 26,1091(2009)。 物理。 rept。 68,449(2005)。85,3966(2000)。[5] x。 NON-N。d:应用。物理。42,045420(2009)。[6] Z. Tong,H。Zhang和J. Yao,应用。物理。b 91,369(2008)。[7]L。 Zhang,W。Qiao,Y。Zhao和G. Black,Opto。Lett。 06,0207,(2010)。 [8]L。 Wang,H。Chhen,圣朱,信件 [9] d。祝福C. Wu,J。Opt。 Soc。 am。 B. 26,1506(2009)。 [10] e。 Cojocaru,Call in Call,113,227(2011)。 [11] y。 T. Fang和Z. C. Liang,Eur。 物理。 J. D 61,725(2011)。 [12] g。 I. Gallina,V。Galdi,Alu和N. Engheta,Phy。 修订版 B83,081105(R)(2011)。 [13] x。 Deng,J。Liu,J。Huang。 物理。 :条件。 Matter,22,055403(2010)。 [14]L。 Dong,G。Black,H。Jiang,H。Jiang,Shi,Jou B 26,1091(2009)。 物理。 rept。 68,449(2005)。Lett。06,0207,(2010)。[8]L。 Wang,H。Chhen,圣朱,信件[9] d。祝福C. Wu,J。Opt。Soc。am。B.26,1506(2009)。[10] e。 Cojocaru,Call in Call,113,227(2011)。[11] y。 T. Fang和Z. C. Liang,Eur。物理。J.D 61,725(2011)。[12] g。 I. Gallina,V。Galdi,Alu和N. Engheta,Phy。修订版B83,081105(R)(2011)。[13] x。 Deng,J。Liu,J。Huang。物理。:条件。Matter,22,055403(2010)。[14]L。 Dong,G。Black,H。Jiang,H。Jiang,Shi,Jou B 26,1091(2009)。物理。rept。68,449(2005)。[15] k。 B. Thapa,P。P。Singh,N。Kumar和S. P. Ojha,J Optik-国际光与电子光学杂志,124,6631(2013)和S. A. Ramakrishna,Prog。[16] P. Yeh,《分层介质》中的光波,John Wiley and Sons,New York(1988)。[17] m。 Born and E. Wolf,《光学校长》,第7版,剑桥大学出版社,剑桥,英国(1999)。
2.2 物联网智能显示技术 周良、张玲玲、周久斌、刘金娥、秦峰,上海天马微电子股份有限公司,上海,中国 2.3 集成多屏驱动器的显示模块 周良、姚璐、张玲玲、周久斌、杜万春、刘金娥、秦峰,天马微电子集团,上海,中国 2.4 自由曲面和曲面显示器的高精度光学贴合 Eugen Bilcai,汉高集团,美国密歇根州麦迪逊高地 2.5 汽车外饰显示器的数字化造型和安全性 Johnathan Weiser、Richard Nguyen、Kimberly Peiler,欧司朗光电半导体公司,美国密歇根州诺维 Ulrich Kizak,欧司朗光电半导体公司,德国雷根斯堡 2.6 传感应用中高质量 SNR 的新方法 Gerald Morrison,SigmaSense,美国德克萨斯州奥斯汀 第三场:平视显示器 联合主席: Ross Maunders,FCA US LLC,美国密歇根州奥本山 Dan Cashen,大陆汽车集团,美国密歇根州奥本山 3.1 用于平视显示器应用的漫射微透镜阵列 Naoki Hanashima、Mitsuo Arima、Yutaka Nakazawa,迪睿合株式会社,日本宫城县多贺城市 Kazuyuki Shibuya,迪睿合株式会社,日本宫城县登米市 Jingting Wu,迪睿合美国公司;美国加利福尼亚州圣何塞 3.2 人类对平视显示器重影的感知研究 Steve Pankratz、William Diepholz、John Vanderlofske,3M 公司,美国明尼苏达州圣保罗 3.3 使用自由曲面光学元件的 3D AR HUD 计算全息显示器 Hakan Urey,CY Vision,美国加利福尼亚州圣何塞
近年来,人们对使用金属纳米结构来控制纳米级的温度越来越感兴趣。在其等离子共振下照明下,金属纳米颗粒具有增强的光吸收,将其变成理想的纳米源热源,可通过光远程控制。这个简单的方案是基于纳米科学社区中众多积极的研究活动和应用。在这里,我们回顾了这种热量等法的所谓领域的最新进展。我们首先描述了在连续或脉冲照明下的金属纳米颗粒中热产生的物理学。然后,我们提出了已经开发出来的实验和理论方法,这些方法是为了进一步理解和设计纳米级的等离子辅助加热过程。最后,我们回顾了一些基于金纳米颗粒产生的热量,即光热癌疗法,纳米疗法,药物输送,光热成像,蛋白质跟踪,光声成像,纳米化学化学和光化合物。