Ambikapur-497001,印度Chhattisgarh,4 M.Sc.-Student,化学系,Pt。Ravishankar Shukla大学,Raipur,Chhattisgarh摘要:这项研究研究了掺杂的钛酸钡(Batio 3)陶瓷的结构,介电和光学性质,突显了它们用于高级电子应用的潜力。钛酸钡是一种突出的铁电材料,以系统的方式与各种元素一起掺杂,以改善其功能属性。通过X射线衍射(XRD)的方式描述了晶体结构和相位发展,展示了掺杂如何影响晶格参数和相位稳定性。介电特征,例如损失切线和介电常数,揭示了掺杂剂对介电行为和铁电特性的影响。光学研究,包括UV-VIS光谱法检查了带隙和光透射率,这对于光电子用途至关重要。发现,靶向掺杂可以有效地改变钛酸钡陶瓷的结构,介电和光学特性,使其非常适合电容器,传感器和其他电子设备。这项研究为优化钛酸钡陶瓷提供了宝贵的见解,以在各种技术应用中实现卓越的性能。也已经观察到某些掺杂剂减少了带隙的能量,从而导致更好的光学透明度和可调折射率,这对于光电应用非常有价值。关键字:钛盐(Batio 3),掺杂陶瓷,介电特性,光学特性,1。引言钛酸钡(Batio 3)钙钛矿结构的陶瓷,由于其出色的介电,铁电和压电性特性,一直是电子应用中的基础材料[1]。这些独特的特征使Batio 3在各种电子设备中必不可少,包括多层陶瓷电容器(MLCC),热敏电阻,执行器和传感器[4]。该材料的高介电常数和可调节的铁电特性对电容器特别有益,在该电容器中,有效的能量存储至关重要[10]。但是,随着电子技术的发展,越来越多的需求以进一步增强和优化Batio 3的内在特性,以满足
随着个性化医疗保健1-3的迅速发展,虚拟现实(VR) /增强现实(AR)4-6和类人形机器人7-9,光学触觉传感器由于其高剂量,高精度,快速响应,快速响应和反电磁干扰10-14引起了密集的关注。通常,光学触觉传感器由光源,包装的传感元素和检测器组成。通过监视使用二氧化硅光纤15-18,聚合物光导导/纤维19-22,19-22,水凝胶光纤23-25和光学微米(226)26 222的2222,通过监视大量高性能触觉传感器的变化,谐振峰或干扰峰的变化,已证明了大量的高性能触觉传感器。中,MNF具有出色的光学和质量特性,包括强烈的逃生场,低光学损失,波长尺度直径,小弯曲 -
双眼立体视觉依赖于两个半球视网膜之间的成像差异,这对于在三维环境中获取图像信息至关重要。因此,与生物眼的结构和功能相似性的视网膜形态电子始终非常需要发展立体视觉感知系统。在这项工作中,开发了基于Ag-Tio 2纳米簇/藻酸钠纤维的半球光电磁带阵列,以实现双眼立体视觉。由等离子热效应引起的全光调制和Ag-Tio 2纳米群体中的光激发,以实现像素内图像传感和存储。广泛的视野(FOV)和空间角度检测是由于设备的排列和半球形几何形状的入射角依赖性特征而在实验上证明的。此外,通过构造两个视网膜形态的恢复阵列,已经实现了基于双眼差异的深度感知和运动检测。这项工作中证明的结果提供了一种有希望的策略,以开发全面控制的回忆录,并促进具有传感器内架构的双眼视觉系统的未来发展。
PlexBright LD-1 单通道 LED 驱动器是一种经济实惠的解决方案,用于控制一个 LED(或两个具有相同输出模式的 LED)。该设备配备手动拨盘和 LCD 显示屏,用于设置光输出强度,并可以接受编码脉冲输出模式的数字 (TTL) 输入信号。LD-1 LED 驱动器还接受编码任意输出模式的 0-5V 模拟输入信号。LD-1 单通道 LED 驱动器可以作为独立设备运行,向 LED 模块提供恒定的控制信号。但需要注意的是,此驱动器不会生成脉冲或任意模式。相反,它从单独的设备(以 TTL 或模拟信号的形式)接收这些模式作为输入,并生成驱动 LED 模块所需的相应输出。请参阅下表了解更多详细信息和技术规格。
订单预计将恢复。全年销售额预计将同比增长1%,达到370亿日,这是由于下半年对光学业务的全面认可,预测了JPY 370亿的预测。营业利润预计将从先前的预测降至JPY 76亿,这是由于面对急剧外汇波动和预期加剧的价格竞争的成本削减所致。
28. Li, JPO、Liu, H.、Ting, DS、Jeon, S.、Chan, RP、Kim, JE, ... & Ting, DS (2021)。数字技术、远程医疗和眼科人工智能:全球视角。进展
我们根据一种直接检测低质量暗物质的新方法提出了光学机械深色仪器(ODIN)。我们考虑在光力学腔中与超流体氦气相互作用。使用有效的场理论,我们计算了在高度人口组成的,驱动的腔体模式下,暗物质从声子上散射的速率。这个散射过程将声子沉积到其基态的第二个声学模式中。然后,通过与泵激光器的光力相互作用将沉积的声子(μEV范围)转换为光子(EV范围)。该光子可以有效地检测到该光子,从而提供了一种敏感的探测kev比例暗物质的手段。我们提供了对背景的现实估计,并讨论了与此类实验相关的技术挑战。我们计算了关于暗物质的投影限制 - 暗物质质量的核子相互作用范围为0.5至300 keV,并估计将来的设备可以探测到低至Oð10-32cm 2的横截面。
The outcomes of computational study of electronic, magnetic and optical spectra for A 2 BX 6 (A = Rb; B = Tc, Pb, Pt, Sn, W, Ir, Ta, Sb, Te, Se, Mo, Mn, Ti, Zr and X = Cl, Br) materials have been proceeded utilizing Vanderbilt Ul- tra Soft Pseudo Potential (US-PP) process.RB 2 PBBR 6和RB 2 PBCL 6被发现是一个()半导体,能量差距分别为0.275和1.142 eV,使它们成为有前途的光伏材料。已证实了RB 2 BX 6(B = TC,W,W,IR,TA,MN,SB,MO)的材料的金属材料,显示了进行谱系的出席率。发现介电函数靠近紫外线区域(3.10-4.13 eV)。RB 2 BX 6的灭绝系数具有用于侵犯的能力。状态的带结构和密度确保磁性半导体的性质2 Mn(Cl,Br)6个钙钛矿。RB 2 MNCL 6和RB 2 MNB 6的总计算磁矩为3.00μβ。先进的自旋技术需要室温的铁磁性。目前的工作证实,溴和氯的双钙钛矿对光伏和光电设备具有极大的吸引力。
国际糖尿病联合会还预测,到 2045 年,约有 7.83 亿人,即八分之一的美国成年人将患糖尿病,增长幅度高达 46% [2]。糖尿病相关死亡的主要原因是高血糖引起的氧化应激,它支持了几种病理过程 [3-6]。虽然目前糖尿病无法治愈,但将血糖恢复到接近正常水平是糖尿病治疗中最重要的部分,可以避免糖尿病相关并发症并延长患者的寿命。建议接受胰岛素治疗的糖尿病患者每日监测血糖水平 [7,8]。虽然使用口服降糖药的患者不需要定期监测血糖,但服用有可能引起低血糖的特定类别药物(磺酰脲类)的患者需要定期监测血糖水平 [8,9]。总体而言,所有糖尿病或糖尿病前期患者都需要根据高血糖的严重程度、糖尿病类型和药物以特定的时间间隔监测血糖。
metasurfaces由于使用定期布置的纳米结构,可以随意调节电磁波,因此为下一代光学设备打开了通往下一代光学设备的门。然而,元时间通常具有固定的纳米结构几何形状的静态光学响应,这通过替换常规的光学组件来实施向技术的过渡带来挑战。为了解决此问题,液晶(LCS)已被积极地用于使用可调节的双折射物实时设计可调的跨面。在这里,我们回顾了有关LC可调式元面的最新研究,这些研究被归类为波前调整和光谱调整。与对可调式跨面的众多评论相比,该评论深入探讨了LC集成的元整日的最新发展。在这篇综述结束时,我们简要介绍了有关LC驱动的元信息的最新研究趋势,并提出了改善LCS的进一步说明。我们希望这篇评论能够加速新的和创新的LC-POW设备的开发。