• • “波普拉德”自行防空武器 • • ZSU-23-4MO“比亚瓦”防空火炮和导弹系统 • • 小型武器的热武器瞄准器 • • 生物武器检测系统 • • THz 范围内危险材料光谱特性系统 • • 防火和抑制爆炸的光电系统 • • 用于检查夜视设备的通用测试装置 • • 双色散射激光雷达 • • 用于水下物体检测的散射激光雷达 • • 荧光激光雷达 • • 高峰值功率 Er:YAG、Tm:YLF、Cr:ZnSe、Ho:YAG、Ho:YLF、Tm 光纤激光器 • • 高峰值功率、人眼安全的 Er 光纤激光发射器 • • 中红外超连续光纤激光源 • • 用于痕量气体检测的光电 CEAS 系统 • • 激光车辆测速系统 • • 基于距离选通成像系统的激光摄影系统
液晶显示屏(LCD)是平板显示器或其他电子调制的光学设备,它使用液晶与极化器结合的光调节性能。液晶不会直接发出光,而是使用背光或反射器来产生颜色或单色的图像。LCD可用于显示任意图像(如通用计算机显示)或具有低信息内容的固定图像,可以显示或隐藏,例如预设单词,数字和七个段显示器,如数字时钟。他们使用相同的基本技术,除了任意图像是由小像素的矩阵制作的,而其他显示器具有较大的元素。LCD可以根据偏振器的排列通常在(正)或OFF(负)上。例如,带有背光的字符正面LCD在背景的背景上具有黑色字母,并且字符负LCD具有黑色背景,字母的字母与背光相同。光学滤镜被添加到蓝色LCD上的白色,以使它们具有特征性的外观。
本书旨在概述与半导体材料中的纳米科学和纳米技术相关的基本物理概念和设备应用。如书中所示,当固体的尺寸缩小到材料中电子的特征长度(德布罗意波长、相干长度、局域长度等)的大小时,由于量子效应而产生的新物理特性就会显现出来。这些新特性以各种方式表现出来:量子电导振荡、量子霍尔效应、共振隧穿、单电子传输等。它们可以在正确构建的纳米结构中观察到,例如半导体异质结、量子阱、超晶格等,这些在文中详细描述。这些量子结构所表现出的效应不仅从纯科学的角度来看意义重大——过去几十年来它们的发现者获得了数项诺贝尔奖——而且在大多数上一代微电子和光电子设备中也有重要的实际应用。 20 世纪 70 年代初,IBM 的 Esaki、Tsu 和 Chang 开创性地开展工作,为后来在量子阱和超晶格中观察到的许多新效应奠定了基础,从那以后,仅仅过去了 30 年左右。为了观察这些效应,20 世纪 80 年代,许多先进的研究实验室定期采用分子束外延、逐层生长和半导体纳米结构掺杂等先进技术。由于所有这些新发展都发生在相对较短的时间内,因此很难及时将它们纳入大学课程。然而,最近大多数一流大学都更新了课程,并在研究生和本科生阶段开设了以下课程:纳米科学与工程、纳米结构与设备、量子设备和纳米结构等。甚至还开设了纳米科学与工程硕士学位。物理学院、材料科学学院和各种工程学院(电气、材料等)经常开设这些课程。我们认为,在普通本科阶段,缺乏关于纳米科学和纳米技术的综合教科书。一些关于固体物理学的一般教科书开始包括几个部分,在某些情况下,甚至包括一整章,来介绍纳米科学。这些材料经常被添加为这些著名教科书新版本的最后一章,有时并没有真正将其整合到书的其余部分中。然而,对于可以部分用于研究生课程的专业书籍来说,情况要好一些,因为在过去的十五年里,一系列关于纳米科学的优秀教科书
Sushil Kumar Mandal教授Santosh Kumar Mahto博士。 Jitendra Kumar Mishra博士Shashi Kant Sharma博士Jayadeep Pati博士Dhananjoy Bhakta博士Bharat Singh d博士。 Rashmi Panda Priyank Khare博士Nishit Malvia博士Kirti Kumari博士d。 Tarun Biswas d。 nidhi kushwaha Rajiv Kumar博士Rishikesh D博士D. Manju Mathew博士Shashi Kant博士Puja Ghosh博士Priyabrat Garaanayak博士Shahid Hassan Shahid Hassan Shalini Mahato Shalini Mahato博士Shalini Mahato Mahato Mahato Dr.Sushil Kumar Mandal教授Santosh Kumar Mahto博士。 Jitendra Kumar Mishra博士Shashi Kant Sharma博士Jayadeep Pati博士Dhananjoy Bhakta博士Bharat Singh d博士。 Rashmi Panda Priyank Khare博士Nishit Malvia博士Kirti Kumari博士d。 Tarun Biswas d。 nidhi kushwaha Rajiv Kumar博士Rishikesh D博士D. Manju Mathew博士Shashi Kant博士Puja Ghosh博士Priyabrat Garaanayak博士Shahid Hassan Shahid Hassan Shalini Mahato Shalini Mahato博士Shalini Mahato Mahato Mahato Dr.
近半个世纪以来,硅基微电子技术与光纤通信引发了一场影响深远的信息技术革命,将人类社会带入了高速信息时代,对通信容量和速率的需求呈指数级增长,而数据中心和高性能计算则面临着电互连速度、带宽、能耗等瓶颈制约,硅基光电子技术成为突破这些瓶颈的关键技术。硅凭借折射率高、可容纳小型有源元件、与CMOS兼容工艺等优势,可以在微芯片上以低成本、低能耗实现大规模光电集成,成为芯片产业的热门选择。此外,硅基光电子技术还催生了中红外通信、微波光电子学、片上实验室、量子通信、光电计算、芯片级激光雷达等一系列新的研究领域。本期特刊“硅光子学的最新进展”涵盖了该领域器件和应用的最新发展。本期特刊包含五篇评论文章和四篇原创研究文章,重点关注数据中心相干互连、光电计算、集成量子电路和硅基光电混合集成中的关键器件及其应用。
• 在这个模型中,固体中的所有原子都共享近乎自由的价电子。因此,有一片自由电子“海洋”在四处游动,这些电子的电位几乎恒定且模糊不清。
摘要。本文采用计算机建模方法,考虑优化基于热管和冷却环的被动空气系统设计,以冷却大功率 LED 灯具。研究了冷却系统的热特性和质量特性,设计参数包括环间距离、环材料厚度和热负荷。结果表明,为了使 LED 光源外壳温度最小,冷却环之间的最佳距离应为 6 毫米,但在这种情况下,冷却系统的质量并不最小。为了降低灯具质量,选择冷却环之间的距离等于 8 毫米是合理的。这样,光源温度仅增加 1.8°С,即 2.2%,而冷却系统的质量减少 1357 克,即 20.5%。同时,将环厚度从 2 毫米降低到 0.8 毫米,还可以将质量减少 2700 克,即 48.6%。然而,这样做时 LED 光源外壳的温度会升高 5.9°С 。所提供的基于热管的冷却系统在 LED 光源晶体最高温度 135.5°С 下分散 500W 热功率时能够提供 0.131°С/W 的热阻。已经制定了开发冷却系统的应用建议。
注意:本稿件由 UT-Battelle, LLC 撰写,合同编号为 DE-AC0500OR22725,与美国能源部签订。出版商接受发表本文,即承认美国政府保留非独占、已付费、不可撤销的全球许可,可出于美国政府目的出版或复制本稿件的已出版形式,或允许他人这样做。能源部将根据 DOE 公共访问计划 (http://energy.gov/downloads/doe-public-access-plan) 向公众提供这些联邦资助研究的成果。
注意:本稿件由 UT-Battelle, LLC 撰写,合同编号为 DE-AC0500OR22725,与美国能源部签订。出版商接受发表本文,即承认美国政府保留非独占、已付费、不可撤销的全球许可,可出于美国政府目的出版或复制本稿件的已出版形式,或允许他人这样做。能源部将根据 DOE 公共访问计划 (http://energy.gov/downloads/doe-public-access-plan) 向公众提供这些联邦资助研究的成果。