抽象的纳米技术是一门快速发展的科学学科,有望通过其在纳米医学中的应用来增强人类的福祉。它描述了用于精确操纵原子和分子以创建具有纳米级尺寸的新材料的技术。纳米颗粒(NP)的通常尺寸范围为1-100 nm。由于纳米颗粒在预防感染方面很重要,因此可以用作具有抗菌特性的治疗性纳米载体。本文回顾了几种纳米金属氧化物的各种生产技术,特征和生物学用途(铁,氧化铁,二氧化钛,氧化锌和氧化镉)的文献。纳米颗粒及其应用的利用率将由于可用于生物修改的成本效益方法而增长。由于其特殊品质,纳米颗粒在几个科学领域都有帮助,包括生物学,材料科学,工程,电子学和食品科学。研究人员因其益处而对纳米技术产生了兴趣,尤其是其在医疗保健系统中的潜在用途,以改善诊断和治疗。关键字:金属纳米颗粒,纳米颗粒作为半导体,ZnO,兴奋剂,催化气体传感器引言纳米科学和纳米技术非常引起了科学社会的兴趣,因为它们在各个领域的出色效果,例如传感器,Optoelectronics,Optoelectronics,Electectronics,Electronics,Electronics,catalysts uss of。“纳米科学”一词是关于纳米量表上物质颗粒和结构的研究。纳米颗粒在科学文献中非常有成就。通常,纳米科学涵盖了材料科学,物理科学,化学科学和工程等广泛领域。它成为最小的受控普通物体,其进一步以牛顿的运动定律为特征,但是这些纳米颗粒变得比普通原子或分子更大,这些原子或分子被量子力学进一步研究。纳米颗粒具有来自较大颗粒的各种基本特性,例如具有比散布良好的纳米颗粒大于0.5 µm的颗粒。球体样纳米颗粒,并用良好的原子排列显示纳米晶体颗粒。执行纳米材料,例如颗粒的大小,形状和纹理参数以及材料的适用性。纳米技术已成为有利于人类的合适,增长最快的技术。
感兴趣的领域:通过简单且经济的化学方法合成具有有趣和独特形态的纳米级材料。形状和尺寸相关的光学、磁性和电化学性质。应用于光催化、光电子学、电化学传感、电催化还原/氧化、太阳能转换、储能设备、超级电容器、水分解和环境修复。
对应物。[2]因此,2D材料非常适合柔性光电子,并且有可能用于下一代超薄电子和光电设备。[1]在2004年发现石墨烯时,首先实现了2D材料的概念。[4]石墨烯对其出色的电气,光学和机械性能引起了广泛的关注。[4-6]已经研究了各种技术应用,包括Spintronics,sensors,opetelectronics,SuperCapitors和Solar Cells等。[5,7] Besides graphene, other 2D materials, such as h-BN, phosphorene, silicene, germanene, and transition metal dichalcogenides (molybdenum disulfide (MoS 2 ), molybdenum diselenide (MoSe 2 ), tungsten disulfide (WS 2 ), and tungsten diselenide (WSe 2 ), etc.),近年来已经进行了广泛的研究。[1,8–11]单层二维材料的厚度通常在订单上或小于1 nm。同时,它们的侧向尺寸可以达到更大的尺寸(从微米到偶数英寸),并且在随后的处理或进行特征或设备应用程序的后续处理或后续测量之前,可以将2D材料转移到不同的基板上。
phangdong,Qingyuan人民医院,Qingyuan人民医院511518,中国广东,磷烯和光电学工程实验室深圳市518060,中国C中国健康科学与环境工程学院,深圳技术大学,深圳市518118,中国d nantong智能和新能源材料的关键实验室,化学和化学工程学院,南北226019,Nantong 226019 518038,广东,中国广播F深圳国际生物医学研究所,深圳518116,中国广东,G,吉达斯大学国王阿卜杜勒齐兹大学科学系,吉达斯21589,沙特阿拉伯,阿拉伯语科学系,科学材料科学院(King Arcipersics for Science for Science for Science for Science for Science for Sciencat 61413,P.O。 框9004,沙特阿拉伯phangdong,Qingyuan人民医院,Qingyuan人民医院511518,中国广东,磷烯和光电学工程实验室深圳市518060,中国C中国健康科学与环境工程学院,深圳技术大学,深圳市518118,中国d nantong智能和新能源材料的关键实验室,化学和化学工程学院,南北226019,Nantong 226019 518038,广东,中国广播F深圳国际生物医学研究所,深圳518116,中国广东,G,吉达斯大学国王阿卜杜勒齐兹大学科学系,吉达斯21589,沙特阿拉伯,阿拉伯语科学系,科学材料科学院(King Arcipersics for Science for Science for Science for Science for Science for Sciencat 61413,P.O。 框9004,沙特阿拉伯phangdong,Qingyuan人民医院,Qingyuan人民医院511518,中国广东,磷烯和光电学工程实验室深圳市518060,中国C中国健康科学与环境工程学院,深圳技术大学,深圳市518118,中国d nantong智能和新能源材料的关键实验室,化学和化学工程学院,南北226019,Nantong 226019 518038,广东,中国广播F深圳国际生物医学研究所,深圳518116,中国广东,G,吉达斯大学国王阿卜杜勒齐兹大学科学系,吉达斯21589,沙特阿拉伯,阿拉伯语科学系,科学材料科学院(King Arcipersics for Science for Science for Science for Science for Science for Sciencat 61413,P.O。 框9004,沙特阿拉伯phangdong,Qingyuan人民医院,Qingyuan人民医院511518,中国广东,磷烯和光电学工程实验室深圳市518060,中国C中国健康科学与环境工程学院,深圳技术大学,深圳市518118,中国d nantong智能和新能源材料的关键实验室,化学和化学工程学院,南北226019,Nantong 226019 518038,广东,中国广播F深圳国际生物医学研究所,深圳518116,中国广东,G,吉达斯大学国王阿卜杜勒齐兹大学科学系,吉达斯21589,沙特阿拉伯,阿拉伯语科学系,科学材料科学院(King Arcipersics for Science for Science for Science for Science for Science for Sciencat 61413,P.O。 框9004,沙特阿拉伯phangdong,Qingyuan人民医院,Qingyuan人民医院511518,中国广东,磷烯和光电学工程实验室深圳市518060,中国C中国健康科学与环境工程学院,深圳技术大学,深圳市518118,中国d nantong智能和新能源材料的关键实验室,化学和化学工程学院,南北226019,Nantong 226019 518038,广东,中国广播F深圳国际生物医学研究所,深圳518116,中国广东,G,吉达斯大学国王阿卜杜勒齐兹大学科学系,吉达斯21589,沙特阿拉伯,阿拉伯语科学系,科学材料科学院(King Arcipersics for Science for Science for Science for Science for Science for Sciencat 61413,P.O。框9004,沙特阿拉伯
e01-数学方法E03-系统和控制E10-机器人技术E42-通信系统和网络E43-微型设备和制造过程E44-领域,波浪和光电e45-电气动力工程E47-信号处理E47-信号处理E48-计算系统F03 - MICROESS 6919191。 Engr 6971,Engr 6981或ENCS 6921
M. E. Potter, D. J. Stewart and R. Raja Department of Chemistry, University of Southampton, Highfield Campus, Southampton, Hampshire, SO17 1BJ, UK E-mail: M.E.Potter@soton.ac.uk K. Ignatyev Diamond Light Source, Harwell, Didcot, Oxfordshire, OX11 0DE, UK T. Bradley and P. J.A. Sazio光电研究中心,南安普敦大学,Highfield Campus,Southampton,Hampshire,SO17 1BJ,UKA. Sazio光电研究中心,南安普敦大学,Highfield Campus,Southampton,Hampshire,SO17 1BJ,UK
Yadav,“基于 (S2Ge)1002x(S3Sb2)x (x = 15, 30, 45, 60) 体系的高性能光电检测传感器,用于光电应用”《材料科学杂志:电子材料》,34,第 11 期 (2023):948,2023 年 4 月 12 日,165041,ISSN 编号 1573-482X,影响因子:2.779,SCI 期刊。[5] Rajnish Raj、Pooja Lohia 和 DK Dwivedi,“用于光子
Zimnyakov, D., Alonova, M., “结合偏振测量和光谱偏振测量技术诊断生物组织中的癌症变化”,Proc. SPIE 9258,光电子学、微电子学和纳米技术高级主题 VII,92580K doi: 10.1117/12.2068182(2015 年 2 月 20 日);11. OP Peresunko;Ju. G. Karpenko;DN Burkovets;PV Ivashko;AV Nikorych;SB Yermolenko;I.
微电子和电子包装,表面安装组件和印刷电路板制造的材料,过程和可靠性。有机底物和陶瓷底物。电子包装中的机械设计,热和电气考虑。设计可制造性。微电子和电子包装中光电包装和其他新兴技术的概述。设计和制造电子设备的项目。3个讲座,1个实验室。被列为CPE 488/IME 458/mate 458。
