项目一开始,分级燃烧循环火箭发动机就被选定为基准推进系统,其燃烧室压力为 16 MPa [3]。全流量分级燃烧循环采用燃料富集的预燃室燃气轮机驱动氢泵,采用氧化剂富集的预燃室燃气轮机驱动液氧泵,是 SpaceLiner 主发动机 (SLME) 的首选设计方案。SpaceX 已经将雄心勃勃的全流量循环用于配备 Raptor 发动机的 Starship&SuperHeavy [39]。从某些方面来看,SpaceX 的这一概念与 SpaceLiner 想要成为的多任务可重复使用运载火箭类似 [9]。Raptor 发动机受到其星际任务的影响,因此使用了不同的推进剂组合 LOX-LCH4,这种组合有朝一日可能会在火星上现场生产。 SpaceLiner 7 要求助推级发动机的真空推力高达 2350 kN,海平面推力为 2100 kN,载客级则分别为 2400 kN 和 2000 kN。这些值对应于 6.5 的混合比,标称运行 MR 范围要求为 6.5 至 5.5。SpaceLiner 8 的配置目前处于初步定义阶段,其发动机推力与 SL7 保持类似的水平。这些推力足以满足超重型运载火箭的应用,并且与欧洲地面测试基础设施的限制兼容。法国目前正在研究一种部分类似的分级燃烧 LOX/甲烷发动机,推力范围从 2000 kN 到 2500 kN,名为 PROMETHEUS-X。[20] 助推级和载客级/轨道器 SLME 发动机的膨胀比已调整到各自的最佳值;而质量流量、涡轮机械和燃烧室在基准配置中假定保持不变 [18]。表 3 概述了通过循环分析获得的标称 MR 范围内的主要 SLME 发动机运行数据 [19]。表中列出了 SpaceLiner 两种不同喷嘴膨胀比(33 和 59)的性能数据。[19] 中显示了 SLME 的完整预定义运行范围,包括极端运行点。
摘要,由于大气逃离了数十亿年的空间,火星的大气相对于地球的沉重同位素富集。估计这种富集需要对所有大气过程有严格的理解,这些过程有助于逃避过程的下层大气和上层大气之间的同位素比的演变。我们结合了通过大气化学套件在车载上获得的CO垂直谱的测量值,Exomar痕量气臂上的预测和光化学模型的预测,找到了光化学诱导的分馏过程的证据,从而消耗了CO和O的重量(Δ13C = -160 C = -160±90±90±)和±90±)。在上层大气中,考虑到这一过程的逃脱分级因子降低了约25%,这表明C从火星的大气中逃脱了比以前想象的要少。在下部大气中,将这种13个耗尽的CO分馏掺入表面可以支持最近发现的火星有机物的非生物起源。1。主文本1.1简介的地貌和矿物学证据线条表明,液态水曾经在火星的表面1,2上很丰富,但是目前尚不清楚我们今天观察到的是什么气候条件,或者是什么使气候促进了气候过渡到气候过渡到干燥,低压大气的原因。在诸如N和H等几种物种的沉重同位素中富集表明,大气逃生是整个历史上大气的气候和大气组成的重要机制3,4。将测得的大气同位素比与进化模型相结合,可以估计火星早期大气中物种的丰度,这证明了对大气同位素组成5-7的透彻理解的价值。对大气从同位素组成的长期演变的准确估计取决于两个重要数量:过去和现在同位素比的测量以及净逃逸分级因子,这决定了重型 - 同位素富集的效率,这是大气逃避到空间的效率8,9。好奇心流动站对C和O大气中C和O的同位素组成的最准确测量是由好奇心漫游者制作的,这表明CO 2在CO 2中的重量同位素在类似地球的标准中(13 C/ 12 C = 1.046±0.004 VPDB和18 O/ 16 O = 1.046 O/ 16 O = 1.048 o/ 16 O = 1.048±0.0055
主教学大纲 EPET 201/ME 201:太空探索 课程描述 EPET 201 是一门关于太阳系探索科学与工程的入门课程。它涵盖科学仪器、任务轨迹、任务规划以及航天器设计的科学和工程约束。课堂项目需要研究,重点是书面交流。该课程仅在春季开设。 学分数 EPET 201 是一门三学分的讲座课程。它与 ME 201 交叉列出。 与课程的关系 EPET 201/ME 201 是 EPET 证书课程和机械工程(ME)中航空航天工程专业的组成部分。 先决条件 无 课堂接触时间 根据 COVID 规定,该课程以异步在线方式授课。COVID 之后,该课程可能继续在线提供或恢复常规的 F2F TR 学期安排。F2F 课程计划在正常课堂时间之外进行几次四小时的实地考察。课程详情 EPET 201/ME 201,太空探索,是 EPET 证书的入门课程,面向对太阳系探索背后的历史和技术以及其他行星体上可用资源感兴趣的任何科学或工程专业学生。本课程将向学生介绍过去 60 年来被派去探索太阳系各个行星体的各种机器人航天器、探测器和着陆器。课程主题将包括用于收集各种数据的各种仪器、行星任务的飞行计划(飞越、轨道器或着陆器)、针对不同热和辐射环境对航天器设计施加的工程约束以及这些任务的科学发现。学生将探索太空探索的历史、太阳系中不同行星体的关键属性(例如行星环境、大气条件、行星材料以及地质活动的程度和类型)以及传感器设计和操作的基础知识。行星探索和任务的另一个重要方面是团队合作,学生必须学会合作和共同努力才能实现目标。在本课程中,学生将以小组形式工作,设计他们自己选择的行星的假设任务,并详细了解太阳系中的物体以及调查该物体所需的航天器性能。研究团队由三名学生组成。教师将从一组有限的(和规定的)主题中提供作业,研究团队将选择一个主题。研究主题扩展了课堂上的主要讲座主题并支持课程学习目标。
地月自主定位系统技术操作和导航实验 (CAPSTONE) 任务由 NASA 与科罗拉多州威斯敏斯特的 Advanced Space, LLC 合作开发。这项技术演示任务是月球周围近直线晕轨道 (NHRO) 操作的探路者。NHRO(近月点 = 3,200 公里;远月点 = 70,000 公里)是 NASA 的 Artemis Gateway 的预定轨道,Artemis Gateway 是一个计划在月球轨道上运行的小型载人空间站。CAPSTONE 任务将验证模拟并确认 Gateway 的运行计划,同时验证 Gateway 动力和推进元件的导航和驻留要求的性能。因此,该任务将为 NASA、商业和国际任务提供在苛刻的轨道范围内运行的运行经验。CAPSTONE 任务由 Terran Orbital Corporation 开发、集成和测试的 12 单元 (U)+ CubeSat 组成,它携带一个有效载荷通信系统,能够与 NASA 的月球勘测轨道器 (LRO) 进行交联测距。CAPSTONE 包含一个芯片级原子钟 (CSAC),用于与 NASA 的深空网络进行单向测距实验,一个专用的有效载荷飞行计算机用于软件演示,以及一个摄像头。此次发射由 NASA 的发射服务计划协调,由 Rocket Lab 在其 Electron 运载火箭上使用其 Photon 上面级部署 CAPSTONE 航天器。该任务于 2022 年 6 月 28 日发射。CAPSTONE 航天器从光子级部署,经历了大约 4 个月的高度燃料效率转移阶段,于 2022 年 11 月 13 日进入 NRHO,进行为期六个月的主要任务阶段。该任务目前处于为期十二个月的技术增强运营阶段。CAPSTONE 技术演示任务由 Advanced Space, LLC 领导。航天器开发和任务运营由加利福尼亚州欧文市的 Terran Orbital Corporation 进行。CAPSTONE 任务的显著成就包括展示 NHRO 的可达性;验证 NHRO 环境中的关键操作概念;为未来月球运营的商业支持奠定基础;并加速实现地月自主定位系统 (CAPS) 提供的点对点导航功能。CAPSTONE 任务由 NASA 的小型航天器技术 (SST) 计划资助,该计划是 NASA 空间技术任务理事会的几个计划之一。该计划的目的是开发和演示增强和扩展小型航天器能力的技术,特别注重通过使用小型航天器实现新的任务架构,扩大小型航天器到达新目的地的范围,并增强未来
空间行业在2022年很忙。美国国家航空航天管理局的Artemis航天器终于到达了月球,为未来的月球勘探奠定了基础。Artemis 1将许多小型月球研究飞船(包括日本的Omotenashi Lunar Lander)作为次要有效载荷。韩国的第一个月球轨道丹努里(Danuri)是由猎鹰9火箭发射到太空中的,其中一枚还推出了日本公司Ispace的私人月球任务Hakuto-R Mission 1。2022年也一直在忙于太空旅游。Blue Origin的新Shepard在三个航班中乘坐下轨轨迹推出了六名乘客。SpaceX的船员龙太空胶囊发射是美国国际空间站的第一个美国太空旅游任务。船上的船员由公理空间操作的任务包括一名专业宇航员和三名游客。中国通过增加了奇尼亚和孟蒂安实验室模块,完成了天和空间站的建设。Wentian和Mengtian都成功发射并停靠到空间站。波音公司推出了其Starliner Space胶囊的第二次无人测试飞行。测试航班成功,将为Starliner在2023年的首次乘员测试飞行带来前进。我们还看到了该行业的预测合并,包括Viasat和Inmarsat之间的拟议合并以及OneWeb和Eutelsat之间的合并。这在2021年的联合国气候变化会议上达到了公共议程,更常见于COP26,也称为2022年的COP27。对我特别突出的是,近年来,尤其是在2022年,人们对我们在地球上生命的价值的价值以及空间是我们陆地生态系统的一部分的观点。清楚地证明了甲烷和碳测量值,监测和验证的空间应用值。是对保护地球和太空环境的迫切需求的日益认识。商业活动和轨道种群的增长对长期空间活动的可持续性产生了很大的影响。一些公司正在积极寻找符合空间碎片缓解标准和可持续性目标的清晰程序和流程的许可制度和监管机构。确认环境,社会和治理(ESG)目标的许可制度可以帮助公司提高融资,提供更好的保险风险,并可以允许其他司法管辖区的市场获得市场。实际上,联合国环境计划财务计划最近表示,将ESG问题整合到其投资分析中是公司信托义务的一部分。
首席军士长 Phillip G. Winkelmann 是消防和紧急服务职业现场经理,总部设在华盛顿特区五角大楼的美国空军。他为空军土木工程师提供建议,帮助他们利用、发展和准备 5,689 名消防员。此外,首席军士长 Winkelmann 还制定职业领域的入职要求,监测职业领域的健康和人员配备,并就人事政策和计划提供意见。最后,他与 MAJCOM 准备部门进行协调,并担任国防部消防学院的顾问,担任高级士兵,指导所有 3E7X1 人员的部队发展和职业发展机会。首席军士长 Winkelmann 出生于华盛顿州史蒂文斯湖,于 1996 年 6 月加入空军。他的背景包括中队、大队、联队、作战司令部和主要司令部级别的领导职务。他的任务包括华盛顿、新墨西哥、马里兰、亚利桑那、新泽西、科罗拉多、韩国、意大利和英国的基地,并被派往沙特阿拉伯、科威特、伊拉克、阿富汗、卡塔尔和阿拉伯联合酋长国 14 次,以支持南方守望、持久自由、伊拉克自由、新黎明、坚定决心、自由哨兵、斯巴达盾牌和坚决支持行动。在担任现职之前,他曾担任亚利桑那州卢克空军基地第 56 土木工程中队消防队长。教育经历 1996 年 德克萨斯州拉克兰空军基地基本军事训练 2001 年 华盛顿州费尔柴尔德空军基地飞行员领导学校 2005 年 佛罗里达州肯尼迪航天中心航天飞机轨道器救援课程 2007 年 德国卡蓬空军基地士官学院 2008 年 阿拉巴马州麦克斯韦空军基地事故指挥官课程 2008 年 空军社区学院消防科学副学士学位 2009 年 空军大学高级士官非驻校 2010 年 联合部队参谋学院高级士兵联合专业军事教育课程 2011 年 空军技术学院消防应急服务飞行长课程 2012 年 阿拉巴马州冈特空军基地高级士官驻校 2013 年 空军社区学院专业经理人认证 2015 年 空军技术学院土木工程主管课程2019 年获得美国军事大学消防管理理学学士学位 2019 年在阿拉巴马州麦克斯韦尔-冈特基地参加首席领导力课程 任务 1. 1996 年 6 月 - 1996 年 9 月,受训人员,基础军事训练,德克萨斯州拉克兰空军基地 2. 1996 年 9 月 - 1996 年 12 月,学生,消防,德克萨斯州古德菲洛空军基地
几十年来,人们一直需要进行大攻角高速风洞测试 [1]-[3]。在早期的航天计划中,以及在航天飞机轨道器的研发中,这种能力对于载人太空舱大气再入测试是必不可少的,例如,航天飞机轨道器以 25 马赫和约 40º 的攻角开始大气再入,仅在 4 马赫以下攻角才会降至 20 ° 以下 [4][5]。此外,现代导弹经常在超音速大攻角条件下机动,因此在研发过程中需要对其空气动力学特性进行适当的实验验证。最近开发的许多具有返飞能力的可重复使用运载火箭概念也强调了对超音速大攻角风洞测试的持续需求。人们已经对大攻角空气动力学进行了大量的理论和实验工作 [5]-[8]。此外,工程级预测代码也已扩展,以涵盖高攻角条件 [9]。另一个需要进行高攻角超音速风洞测试的领域是计算流体力学 (CFD)。许多处理高攻角空气动力学的代码正在开发中,主要是为了支持航天飞机、再入舱和类似飞行器的开发。开发人员承认,高攻角空气动力学带来了许多挑战 [10]-[12]。用作这些代码测试用例的实验数据将
几十年来,人们一直需要进行大攻角高速风洞测试 [1]-[3]。在早期的航天计划中,以及在航天飞机轨道器的研发中,这种能力对于载人太空舱大气再入测试是必不可少的,例如,航天飞机轨道器以 25 马赫和约 40º 的攻角开始大气再入,仅在 4 马赫以下攻角才会降至 20 ° 以下 [4][5]。此外,现代导弹经常在超音速大攻角条件下机动,因此在研发过程中需要对其空气动力学特性进行适当的实验验证。最近开发的许多具有返飞能力的可重复使用运载火箭概念也强调了对超音速大攻角风洞测试的持续需求。人们已经对大攻角空气动力学进行了大量的理论和实验工作 [5]-[8]。此外,工程级预测代码也已扩展,以涵盖高攻角条件 [9]。另一个需要进行高攻角超音速风洞测试的领域是计算流体力学 (CFD)。许多处理高攻角空气动力学的代码正在开发中,主要是为了支持航天飞机、再入舱和类似飞行器的开发。开发人员承认,高攻角空气动力学带来了许多挑战 [10]-[12]。用作这些代码测试用例的实验数据将
2.3-1 SE 发动机跟踪图标 ............................................................................................................................................. 8 2.3-2 产品层次结构,第 1 层:首次通过 SE 发动机 ...................................................................................................... 9 2.3-3 产品层次结构,第 2 层:外部油箱 ............................................................................................................................. 10 2.3-4 产品层次结构,第 2 层:轨道器 ............................................................................................................................. 10 2.3-5 产品层次结构,第 3 层:航空电子系统 ............................................................................................................................. 11 2.3-6 产品层次结构:完整通过 SE 发动机的系统设计流程 ............................................................................. 11 2.3-7 产品运行阶段(阶段 E)典型活动模型 ............................................................................................. 14 2.3-8 重新进入 SE 发动机的新产品或升级产品 ............................................................................................................. 15 2.5-1 非支配设计的包络面 ............................................................................................................................. 16 2.5-2 从包括不确定性在内的几个设计概念中获得的结果估计..................................................... 17 3.0-1 NASA 计划寿命
前言 我非常高兴地介绍印度国家空间研究委员会 (INCOSPAR)、印度国家科学院 (INSA) 和印度空间研究组织 (ISRO) 为 2024 年 7 月 13 日至 21 日在韩国釜山举行的第 45 届 COSPAR 科学大会准备的《印度空间研究报告》。该报告概述了 2022 年 1 月至 2023 年 12 月期间印度在近地空间、太阳、行星科学和天体物理学几个领域取得的重要成就、成果和研究活动。本报告还介绍了空间科学研究能力建设活动、空间科学和技术学术课程、空间科学和技术方面的国家和国际合作、在各个研究所和中心建立的为印度空间科学探索和研究做出贡献的实验室和设施,等等。印度空间科学界一直活跃于天文学和天体物理学、太阳物理学、空间天气和日地关系、空间和大气科学、行星科学、地磁学和地球科学等领域。本报告介绍了海洋学、大气结构和动力学、云和对流系统、气溶胶、辐射和微量气体、天气和气候变化、中层大气、电离层、磁层、太阳风和空间天气、月球和行星研究、太阳和太阳系天体、恒星、星系、银河系和河外天文学和宇宙学等领域的研究重点。在行星科学领域,2023 年 8 月 23 日,月船三号在月球南部高纬度 Shiv-Shakti 点软着陆,使印度成为第四个掌握月球软着陆技术的国家,但却是第一个在南极地区实现软着陆的国家。月船三号收集了着陆点附近元素组成、热物理性质、等离子体环境和地震活动等一个农历日的数据。成功演示了从月球表面跳跃、从月球轨道脱离到地球轨道,这将为未来的样品返回铺平道路。月船二号轨道器已运行五年,为月球科学提供了新的见解。AstroSat 是印度首个多波长太空天文观测站,已于 2023 年 9 月 28 日成功完成八年运行。该观测站自 2016 年 10 月起以提案方式运行,并向天文学界开放。目前,AstroSat 拥有来自 50 个国家的约 2700 名用户。在最初的八年中,AstroSat 观测已产生了 440 多份同行评审出版物,以及 1500 多份会议论文集、GCN 通告、天文学家电报和其他非同行评审出版物。在此期间,AstroSat 数据得出的一些主要科学成果包括利用 UVIT 发现遥远矮星系中的扩展发射,2018 年爆发衰退阶段,变貌活跃星系 NGC 1566 的光谱跃迁,以及对 OJ 287 火焰星光谱状态的多波长观测。Aditya-L1 于 2023 年 9 月 2 日发射,是印度首次从日地系统拉格朗日点 1 (L1) 研究太阳的太空任务。该任务搭载七个有效载荷来观察光球层、色球层和日冕,为观察太阳活动及其对空间天气的影响提供了更大的优势。Aditya-L1 在 2024 年 5 月捕获了太阳事件(耀斑和日冕抛射)。印度的 X 射线偏振测量任务 XPoSat 于 2024 年 1 月 1 日发射,已开始进行科学观测,其中包括由 XPoSat 上的 X 射线偏振仪 POLIX 生成蟹状脉冲星的脉冲轮廓。我感谢为编写本报告而为其各自研究所和部门开展的空间研究活动提供意见的科学家。我感谢印度空间研究组织总部班加罗尔科学计划办公室代表 INCOSPAR 编撰和编辑本报告的辛勤工作。