毒理学实验室面临着越来越多的药物需要快速筛查、确认和定量的问题。迫切需要可靠且值得信赖的方法,以承受高通量药物筛查和定量的日常严格要求。这里我们介绍了一种即用型滥用药物检测工作流程,该工作流程在 Thermo Scientific™ TSQ Quantis™ Plus 三重四极杆质谱仪和 Thermo Scientific™ Orbitrap Exploris™ 120 高分辨率精确质量 (HRAM) 质谱仪(图 1)上实施,可快速轻松地实施常规和可重复的药物检测。Orbitrap Exploris 120 MS 还具有收集高分辨率精确质量数据的额外优势,从而能够执行回顾性分析。
用于药物发现的加速血浆蛋白质组学:血浆蛋白质组学正在通过通过液体活检对血液中的循环蛋白进行全面分析,从而彻底改变了药物发现。这种方法确定了早期疾病检测的关键生物标志物,加速了新型药物靶标的发现,并提高了药物发育的效率。血液中的蛋白质分析支持个性化的医学,从而对个人对治疗的反应提供了见解。总体而言,血浆蛋白质组学具有更精确,更有效的药物疗法的新时代的希望,对改善患者预后产生了重大影响。研究人员可以利用Evosep独特的端到端样品制备工作流程和Thermo Fisher的最新最新的Thermo Scientific Orbitrap星体质谱仪功能来加快对临床相关生物标志物的识别和验证。
摘要 自从实验证实行星、卫星和行星际介质中存在大量复杂的有机化合物以来,对高效仪器进行明确的太阳系成分原位分析的科学需求日益增加。新的实验数据将揭示太阳系的化学历史和外星有机化合物的可能形成机制。基于空间级 Orbitrap™ 的高分辨率质谱仪将允许获取所需的数据。在本研究项目范围内,对 CosmOrbitrap 项目内开发的 Lab-CosmOrbitrap 和 OLYMPIA 质谱分析仪进行了优化。已经开发并评估了为未来空间级仪器提出的新采样系统和电离机制。测量了当前设计的空间仪器(CRATER、CORALS 和 HANKA)所需的固体(真实的月球碎片)和气体样品(He、C 2 H 4 、N 2 和 CO)的实验校准数据。
在过去的十年中,抗体 - 药物缀合物(ADC)已演变为有望且有效的治疗剂,用于癌症的靶向化学疗法。截至2023年8月,全球批准了16个ADC用于血液恶性肿瘤和实体瘤,超过100名ADC候选者正在接受临床试验[1]。ADC是通过针对肿瘤细胞的肿瘤相关抗原(TAAS)和高效的细胞毒性药物有效载荷的肿瘤抗原(TAA)的偶联而产生的,该抗原具有高效或不可裂解的化学化学化学连接器。在这里,我们证明了EnherTu®(trastuzumab deruxtecan,t-dxd)的全面表征,由阿斯利康(Astrazeneca)和Daiichi Sankyo开发,这是一种最新代代的同质半胱氨酸共轭 - ADC,与高级DAR,使用A Vanquish Flex flex uhplc uhplc coupled bibipled forbial for Orbitap bosema squeckement squeckement squeckection24000000000。
•使用SIMS 2000或同等软件对食品的感觉分析•细胞培养技术,培养基制剂,肿瘤细胞分离和分子生物学方法的经验。例如,维持用于临床前(体内和体外)实验中的哺乳动物和/或主要细胞系。•色谱经验:气相,微甲,薄层,离子,液体(UHPLC)分析食品或相关产品中的污染物,营养或功能成分。•质谱经验:诱导耦合的血浆质谱仪,串联质谱仪与气体色谱耦合(GC-MS/MS),Orbitrap或其他质谱仪与超高性能液体冰镇仪(LC-MS)耦合,以分析污染物,营养或功能相关的综合产品或相关组成部分。具有多个电离源的经验(例如,APPI,APCI,ESI,DESI)是一种资产。•振动光谱经验:共焦拉曼显微镜,更富含粉红色的红外显微镜和分光光度计,以分析食品中的污染物,营养或功能成分。•使用自动加压溶剂提取器(加速溶剂或超临界流体提取器),微波提取,超单子波波或溶剂溶剂溶液提取物,在食品或相关产品中提取污染物,养分或功能成分。•以前的经验开发了植物性食品或功能性食品,在食品或相关产品中保留营养或功能成分。•技术/手稿写作和分析方法开发技能。•能够与政府,学术和行业合作伙伴在团队背景下工作。•强大的生物信息学,代谢组学,化学计量学或统计技能。•评估食物生物活性或验证健康益处的细胞培养专业知识。•使用拉曼,FTIR和Orbitrap或其他高分辨率质谱仪的经验是一种资产。•对研究设计,研究方法和数据分析有深入的了解。•能够使用MS OF CE(Word,Excel,PowerPoint,Outlook,Outlook,Teams,SharePoint)。•英语发达的口头,书面和人际交往能力。
1。Wang,d。,Tai,P.W.L。 和gao,g。 (2019)腺相关病毒载体作为基因治疗递送的平台。 nat Rev Drug Discov 18,358-378。 2。 Jay,F.T。,Lughlin,C.A。 和Carter,B.J。 (1981)真核转化控制:腺相关的病毒蛋白合成受腺病毒DNA结合蛋白突变的影响。 Proc Natl Acad Sci U S A 78,2927-2931。 3。 Srivastava,A。,Lusby,E.W。 和Berns,K.I。 (1983)腺苷相关病毒2基因组的核苷酸序列和组织。 J Virol 45,555-564。 4。 Johnson,F.B。,Ozer,H.L。 和Hoggan,M.D。 (1971)腺病毒相关病毒的结构蛋白3. J Virol 8,860-863。 5。 Rose,J.A。,Maizel,J.V。,Inman,J.K。 和Shatkin,A.J。 (1971)腺病毒相关病毒的结构蛋白。 J Virol 8,766-770。 6。 Snijder,j。,van de Waterbeemd,m。,Damoc,e。,Denisov,e。,Grinfeld,d。,Bennett,A。,Agbandje-McKenna,M。,Makarov,A。 和Heck,A.J。 (2014)通过Orbitrap质谱定义了病毒和细菌纳米颗粒的化学计量和货物负荷。 J Am Chem Soc 136,7295-7299。 7。 xie,q。,bu,w。,bhatia,s。,hare,j。,somasundaram,t。,azzi,a。 和Chapman,M.S。 (2002)腺相关病毒(AAV-2)的原子结构,人类基因治疗的载体。 Proc Natl Acad Sci U S A 99,10405-10410。 8。 和Agbandje-Mckenna,m。Wang,d。,Tai,P.W.L。和gao,g。(2019)腺相关病毒载体作为基因治疗递送的平台。nat Rev Drug Discov 18,358-378。2。Jay,F.T。,Lughlin,C.A。 和Carter,B.J。 (1981)真核转化控制:腺相关的病毒蛋白合成受腺病毒DNA结合蛋白突变的影响。 Proc Natl Acad Sci U S A 78,2927-2931。 3。 Srivastava,A。,Lusby,E.W。 和Berns,K.I。 (1983)腺苷相关病毒2基因组的核苷酸序列和组织。 J Virol 45,555-564。 4。 Johnson,F.B。,Ozer,H.L。 和Hoggan,M.D。 (1971)腺病毒相关病毒的结构蛋白3. J Virol 8,860-863。 5。 Rose,J.A。,Maizel,J.V。,Inman,J.K。 和Shatkin,A.J。 (1971)腺病毒相关病毒的结构蛋白。 J Virol 8,766-770。 6。 Snijder,j。,van de Waterbeemd,m。,Damoc,e。,Denisov,e。,Grinfeld,d。,Bennett,A。,Agbandje-McKenna,M。,Makarov,A。 和Heck,A.J。 (2014)通过Orbitrap质谱定义了病毒和细菌纳米颗粒的化学计量和货物负荷。 J Am Chem Soc 136,7295-7299。 7。 xie,q。,bu,w。,bhatia,s。,hare,j。,somasundaram,t。,azzi,a。 和Chapman,M.S。 (2002)腺相关病毒(AAV-2)的原子结构,人类基因治疗的载体。 Proc Natl Acad Sci U S A 99,10405-10410。 8。 和Agbandje-Mckenna,m。Jay,F.T。,Lughlin,C.A。和Carter,B.J。(1981)真核转化控制:腺相关的病毒蛋白合成受腺病毒DNA结合蛋白突变的影响。Proc Natl Acad Sci U S A 78,2927-2931。3。Srivastava,A。,Lusby,E.W。和Berns,K.I。(1983)腺苷相关病毒2基因组的核苷酸序列和组织。J Virol 45,555-564。4。Johnson,F.B。,Ozer,H.L。 和Hoggan,M.D。 (1971)腺病毒相关病毒的结构蛋白3. J Virol 8,860-863。 5。 Rose,J.A。,Maizel,J.V。,Inman,J.K。 和Shatkin,A.J。 (1971)腺病毒相关病毒的结构蛋白。 J Virol 8,766-770。 6。 Snijder,j。,van de Waterbeemd,m。,Damoc,e。,Denisov,e。,Grinfeld,d。,Bennett,A。,Agbandje-McKenna,M。,Makarov,A。 和Heck,A.J。 (2014)通过Orbitrap质谱定义了病毒和细菌纳米颗粒的化学计量和货物负荷。 J Am Chem Soc 136,7295-7299。 7。 xie,q。,bu,w。,bhatia,s。,hare,j。,somasundaram,t。,azzi,a。 和Chapman,M.S。 (2002)腺相关病毒(AAV-2)的原子结构,人类基因治疗的载体。 Proc Natl Acad Sci U S A 99,10405-10410。 8。 和Agbandje-Mckenna,m。Johnson,F.B。,Ozer,H.L。和Hoggan,M.D。(1971)腺病毒相关病毒的结构蛋白3.J Virol 8,860-863。5。Rose,J.A。,Maizel,J.V。,Inman,J.K。 和Shatkin,A.J。 (1971)腺病毒相关病毒的结构蛋白。 J Virol 8,766-770。 6。 Snijder,j。,van de Waterbeemd,m。,Damoc,e。,Denisov,e。,Grinfeld,d。,Bennett,A。,Agbandje-McKenna,M。,Makarov,A。 和Heck,A.J。 (2014)通过Orbitrap质谱定义了病毒和细菌纳米颗粒的化学计量和货物负荷。 J Am Chem Soc 136,7295-7299。 7。 xie,q。,bu,w。,bhatia,s。,hare,j。,somasundaram,t。,azzi,a。 和Chapman,M.S。 (2002)腺相关病毒(AAV-2)的原子结构,人类基因治疗的载体。 Proc Natl Acad Sci U S A 99,10405-10410。 8。 和Agbandje-Mckenna,m。Rose,J.A。,Maizel,J.V。,Inman,J.K。和Shatkin,A.J。(1971)腺病毒相关病毒的结构蛋白。J Virol 8,766-770。6。Snijder,j。,van de Waterbeemd,m。,Damoc,e。,Denisov,e。,Grinfeld,d。,Bennett,A。,Agbandje-McKenna,M。,Makarov,A。和Heck,A.J。(2014)通过Orbitrap质谱定义了病毒和细菌纳米颗粒的化学计量和货物负荷。J Am Chem Soc 136,7295-7299。7。xie,q。,bu,w。,bhatia,s。,hare,j。,somasundaram,t。,azzi,a。和Chapman,M.S。(2002)腺相关病毒(AAV-2)的原子结构,人类基因治疗的载体。Proc Natl Acad Sci U S A 99,10405-10410。8。和Agbandje-Mckenna,m。Govindasamy,L。,Padron,e。,McKenna,R.,Muzyczka,n。,Kaludov,n。,Chiorini,J.A。(2006)在结构上绘制腺相关病毒血清型4的多种表型。J Virol 80,11556-11570。9。tse,l.v。,Klinc,K.A。,Madigan,V.J。,Castellanos Rivera,R.M。,Wells,L.F。,Havlik,L.P。,Smith,J.K。和Asokan,a。(2017)结构引导的抗原不同的腺相关病毒变体用于免疫逃避。Proc Natl Acad Sci U S 114,E4812-E4821。10。Chan,K.Y。,Jang,M.J。,Yoo,B.B.,Greenbaum,A。Chan,K.Y。,Jang,M.J。,Yoo,B.B.,Greenbaum,A。
摘要:酵母在发酵葡萄酒发酵过程中产生的较高醇对葡萄酒的气味和味道的影响最大。目前,在内源性CO 2下过压的甲醇和较高醇的代谢反应尚未完全阐明。在这项工作中,使用OffGEL分级器和LTQ Orbitrap进行蛋白质鉴定的LTQ Orbitrap进行,进行了蛋白质识别,然后进行了代谢组研究,用于检测和定量两种较高酒精(GC-FID和SBSE-TD-GC-MS)和氨基酸(HET)(HEM METES)(HET)的蛋白质(HE)(HEM MET)的变化(HE)在封闭瓶中,在CO 2过压条件下,酿酒酵母与高等醇形成。 控制条件没有CO 2在开放瓶中过压。 在两种情况下都检测到甲醇和6个较高的醇,我们能够与22种蛋白质相关:CO 2过压条件下的15种蛋白质和在控制条件下的22种蛋白质。 对于高醇的前体,在两种情况下都鉴定出18个氨基酸。 在两种情况下获得的代谢和蛋白质组学方面的文件都不同,因此CO 2过压可能会影响较高醇的代谢。 此外,在CO 2过压的条件下无法建立直接相关性;但是,在没有压力的情况下,可以建立关系。,进行了蛋白质识别,然后进行了代谢组研究,用于检测和定量两种较高酒精(GC-FID和SBSE-TD-GC-MS)和氨基酸(HET)(HEM METES)(HET)的蛋白质(HE)(HEM MET)的变化(HE)在封闭瓶中,在CO 2过压条件下,酿酒酵母与高等醇形成。控制条件没有CO 2在开放瓶中过压。甲醇和6个较高的醇,我们能够与22种蛋白质相关:CO 2过压条件下的15种蛋白质和在控制条件下的22种蛋白质。对于高醇的前体,在两种情况下都鉴定出18个氨基酸。在两种情况下获得的代谢和蛋白质组学方面的文件都不同,因此CO 2过压可能会影响较高醇的代谢。此外,在CO 2过压的条件下无法建立直接相关性;但是,在没有压力的情况下,可以建立关系。此处提供的数据可以被视为一个平台,它是酿酒酵母代谢组 - 蛋白质组的基础,目的是在生产起泡葡萄酒的生产条件下了解第二次发酵条件下的酵母行为。
色谱柱:HALO 1000Å C4, 2.7 µm, 2.1 x 150 mm 部件号:92712-714 流动相 A:10 mM 二氟乙酸 (DFA) 水溶液 流动相 B:10/90 水/乙腈中的 10 mM 二氟乙酸 梯度:10 分钟内 B 从 32% 变为 42% 流速:0.35 mL/min。压力:184 bar 温度:80 °C 检测:280 nm 进样量:1 µL 2 mg/mL 曲妥珠单抗(糖基化/去糖基化) 样品溶剂:0.1% DFA 溶于 70/30 水/乙腈 LC 系统:Shimadzu Nexera MS 测试条件: MS 系统:Thermo Fisher Orbitrap VelosPro ETD 扫描时间:6 µscans/250 ms 最大进样时间 扫描范围:1800 至 4000 m/z MS 参数:正离子模式,ESI 在 +4.0 kV,225°C 毛细管
摘要:牛奶中的抗生素残留是乳制品加工过程中严重的健康和技术问题。本研究旨在验证治疗后未使用抗菌药物,同时考虑停药期,并评估在确认 HPLC-HRMS(高效液相色谱-高分辨率质谱)Orbitrap 分析后在现场条件下进行筛选测试的可靠性。此外,使用新的 Compound Discoverer 方法研究了预期或非目标代谢物的存在。尽管样本是在第七次挤奶时采集的,但 29% 的样本中仍显示存在抗菌药物,有时还显示其代谢物(恩诺沙星和林可霉素)。此外,在 9% 的样本中,由于存在母体药物和代谢物,因此发现了未申报的治疗。最后,提出了两种新的恩诺沙星代谢物 ENRO-N-甲基乙酰胺和 ENRO-鸟氨酸的推定鉴定。鉴于这一证据,必须牢记,一些具有药理活性的代谢物也可能对消费者和奶酪行业整个牛奶加工过程构成风险。
1。为学生提供有关基因组学和蛋白质组学的基本知识2。对基因组映射,结构/功能基因组学,基因组学和蛋白质组学涉及的技术的广泛知识。课程内容单元1:OMICS的基因和基因组介绍;基因组学类型;基因:orf;外显子;内含子;原核,真核和线粒体/叶绿体基因组; shot弹枪DNA测序; c-value&paradox;人类基因组项目。单元2:基因组图和分析基因组映射的基因表达类型;涉及基因组图和基因表达分析的技术(RFLP,RAPD,SSCP,SSLP,STS,RT-PCR; DD-PCR,SNP,FISH,FISH,NUCLEASE保护测定,分子杂交)。单元3:蛋白质组学概念和蛋白质组成分的基础;蛋白质组学在生物学功能中的重要性;蛋白质 - 蛋白质相互作用和研究它的方法:蛋白质阵列,交叉链接方法,亲和力方法,酵母杂种系统。单元4:蛋白质质谱法(MS)的质谱分析 - 肽质量指印,质量精度,分辨率,灵敏度;离子来源:电喷雾电离,基质辅助激光解吸和电离;质量分析仪:四极,离子陷阱,飞行时间,圆形,傅立叶 - 转换离子回旋共振,混合分析仪;探测器; MS-MS; LC-MS。教科书:-1。基因组分析和基因组学原理S.B. Primrose和R.M. Twyman,第三版(Blackwell Publishing)。2。Liebler,“蛋白质组学简介” Humana出版社3。Conard,爱德华。 基因组学。 2.Pennington,SR,Dunn MJ,“蛋白质组学:功能的蛋白质序列”。Conard,爱德华。基因组学。2.Pennington,SR,Dunn MJ,“蛋白质组学:功能的蛋白质序列”。Apple Academics参考书:-1。ODD RW,Primrose SB,“基因操纵原理,基因工程概论”,Blackwell Science Publications。viva书3.生物技术的质谱法:Gary Siuzdak。