诺贝尔基金会将 2020 年诺贝尔化学奖授予“CRISPR/Cas9 基因剪刀”,强调了基因创新对社会、科学和医学的重要意义。本文重点关注“生殖基因创新”,这一术语包括细胞质转移、线粒体转移以及种系或可遗传基因编辑技术,这些技术在美国均被归类为“实验性”。这些技术都使用体外受精,这是一种合法且广泛可用的做法。然而,生殖基因创新引起了争议和众多障碍,包括反复出现的联邦预算附加条款、联邦执法行动的威胁以及无法获得联邦资金。在开始时,器官移植也面临着类似的争议和障碍,包括对外科医生的检察审查以及因患者非正常死亡而对外科医生的诉讼。现在,器官移植的保险覆盖范围和机动车管理部门普遍提供的器官捐赠选择系统表明,器官移植已被社会接受并成为常规做法。乍一看,器官捐赠和生殖遗传创新几乎没有共同之处,原因是紧迫感、生殖选择问题和遗传变化等因素不同。然而,尽管存在这些差异,但这两种技术具有重要且未被充分重视的相似之处,例如使用外来生物材料、基因转移、对分配的担忧以及开始时的广泛争议。
本模块探讨了人兽嵌合体及其在器官移植生产中的应用所涉及的伦理问题。目前,美国有大量器官移植积压。器官移植的平均等待时间接近 5 年,每天约有 20 人死于等待移植的名单上。这场危机迫使人们制定新的移植器官获取策略。这些进展之一是利用嵌合体为接受者培育定制器官的前景。嵌合体是由两种遗传上不同的细胞组成的生物体。嵌合可以发生在一个物种内,也可以发生在两个不同物种之间。后一种嵌合体引起了科学家的兴趣,因为它可能是一种生成适合人类移植的器官的方法。提出的策略是从非人类动物胚胎(通常是猪)和人类干细胞中创造嵌合体。最终,在嵌合体成年后,干细胞捐赠者将接受嵌合体移植的新的类人器官。当然,杂交物种和牺牲动物生命进行器官移植会带来一些道德问题,但嵌合体研究已经流行了几十年,并预示着光明的未来。本模块的目标是让学生了解嵌合体研究的主题,特别是它与器官移植的关系,并引发关于这一医学进步的伦理问题的有益辩论。
结果:在 6GE 猪中确认 GGTA1、CMAH 和 B4GALNT2 完全敲除。hCD55 和 hTM 的表达分别比人类高约 7 倍和 13 倍,而 hEPCR 水平与人类相当。体外,与野生型 pAEC 相比,6GE pAEC 与人类 IgM 和 IgG 的结合显著降低(IgG p<0.01,IgM p<0.0001)。与 TKO/hCD55 pAEC 类似,与 TKO pAEC 相比,6GE pAEC 的补体介导细胞毒性显著降低(p<0.001)。与 WT(p<0.0001)、TKO(p<0.01)和 TKO/hCD55/hTM 猪(p<0.05)相比,6GE 猪中 hTM 和 hEPCR 的共表达导致与人类全血共培养时凝血酶-抗凝血酶 (TAT) 复合物水平显著下降。病理生理分析表明,6GE 猪肾脏和肝脏与人类免疫和凝血系统具有良好的相容性。然而,与其他基因编辑猪相比,6GE 猪对感染的敏感性增加,而 TKO/hCD55 猪在一般环境中饲养时被认为是安全的。
*信函的作者:patrick.laufs@inrae.fr A.N.,P.L。和A.M.C.构思了该项目和P.L.监督该项目。A.N. 在P.L.,A.M.C.,A.M.B。和M.S.的帮助下进行了大多数实验。 在S.B的监督下执行了Y1H屏幕。 A.M.C. 进行了初步的遗传分析。 B.A. 有助于产生双突变体和转基因线。 L.C. 构思了整个原位协议并监督A.N. 为此。 yu.l. 在Y.L的监督下进行了凝胶移位实验。 J.B.写了荧光平均脚本。 A.N. 和P.L. 用AMC的输入写了这篇文章。 根据作者指示(https://academic.up.com/plcell)中描述的政策,负责分配本文提出的材料积分不可或缺的材料的作者。A.N.在P.L.,A.M.C.,A.M.B。和M.S.的帮助下进行了大多数实验。在S.B的监督下执行了Y1H屏幕。A.M.C. 进行了初步的遗传分析。 B.A. 有助于产生双突变体和转基因线。 L.C. 构思了整个原位协议并监督A.N. 为此。 yu.l. 在Y.L的监督下进行了凝胶移位实验。 J.B.写了荧光平均脚本。 A.N. 和P.L. 用AMC的输入写了这篇文章。 根据作者指示(https://academic.up.com/plcell)中描述的政策,负责分配本文提出的材料积分不可或缺的材料的作者。A.M.C.进行了初步的遗传分析。B.A. 有助于产生双突变体和转基因线。 L.C. 构思了整个原位协议并监督A.N. 为此。 yu.l. 在Y.L的监督下进行了凝胶移位实验。 J.B.写了荧光平均脚本。 A.N. 和P.L. 用AMC的输入写了这篇文章。 根据作者指示(https://academic.up.com/plcell)中描述的政策,负责分配本文提出的材料积分不可或缺的材料的作者。B.A.有助于产生双突变体和转基因线。L.C. 构思了整个原位协议并监督A.N. 为此。 yu.l. 在Y.L的监督下进行了凝胶移位实验。 J.B.写了荧光平均脚本。 A.N. 和P.L. 用AMC的输入写了这篇文章。 根据作者指示(https://academic.up.com/plcell)中描述的政策,负责分配本文提出的材料积分不可或缺的材料的作者。L.C.构思了整个原位协议并监督A.N.为此。yu.l.在Y.L的监督下进行了凝胶移位实验。J.B.写了荧光平均脚本。A.N. 和P.L. 用AMC的输入写了这篇文章。 根据作者指示(https://academic.up.com/plcell)中描述的政策,负责分配本文提出的材料积分不可或缺的材料的作者。A.N.和P.L.用AMC的输入写了这篇文章。根据作者指示(https://academic.up.com/plcell)中描述的政策,负责分配本文提出的材料积分不可或缺的材料的作者。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2023年8月31日发布。 https://doi.org/10.1101/2023.08.29.555280 doi:biorxiv preprint
图1肝脏中PI3Kγ的细胞类型特异性表达模式,炎症条件下的诱导和功能。(a)PI3Kγ通过人类肝细胞和来自最小至轻度炎性活性的患者的活检中的人类肝细胞和免疫细胞浸润。三角形指向免疫细胞(簇),其中包括一些已知高度表达PI3Kγ的中性粒细胞。在阴性对照中,主抗体被相等的体积缓冲液代替。(b)来自20名男性(雌性(♂)供体池(HEP,DP20)的人类原发性肝细胞中的PI3Kγ表达,但不是非实质细胞(NPC)。来自健康志愿者(LEU)的分离人白细胞作为阳性对照。(c)原代鼠肝细胞和HEPG2细胞在基础条件下表达PI3Kγ; LPS,IFN-γ,IL-1β和TNF-α(CM)刺激后24小时的表达在24小时内增加。(d)WT,PI3KγNULL(左)和肝脏特异性PI3Kγ基因敲除小鼠(PI3KγFloxflox flox flox tg/tg x ailbcre(tg)/tg(tg)/tg,中间,中间)或PII3K抑制剂在AS605240中的PLAN(右图)的planemians sepers septon septin septin septian septhemialsem sepers sepers septhemiane septh粪便悬架。
药物发现和开发是一个漫长,昂贵且高风险的过程,大约需要10年的时间,每种新药的平均成本超过15亿美元,以供临床使用。[1]其中一个存在于一个事实中,即仅在临床试验阶段丢弃90%的候选药物。[1]不可控制的毒性代表了一个主要的流失因子,占此类失败的总体30%,[2]由肝和心脏不良影响带领。[3]此外,药物诱导的心脏和肝脏不良反应共同占与安全性相关的75%以上,并吸引了来自FDA批准的药物市场。[4]这表明目前使用临床前方法评估药物安全性,主要依赖于2D细胞培养物和动物模型,这不足以预先与人类相关的结果。[5]最近,在微流体和微生物技术的基础上,已经花费了巨大的努力来开发先进的人类微型组织模型,以更好地代表人类的体外药物筛查和安全应用。在这种情况下,片上器官(OOC)代表了在体外模拟人体器官的基本功能的创新和可靠的工具[6],并且在临床翻译能力方面证明,与之前提到的传统临床前系统相比,这两种功能都具有前所未有的优势。[7]包含单个器官的不同OOC解决方案(即肝脏或心脏)已提出形成药物安全研究。[15]在肝脏心脏模型中引起了极大的兴趣,这些模型可以模仿和预测药物肝变代后靶向心脏的毒性。[8–11]但是,只有很少的平台能够结合对药物的靶标和靶向效应的检测,从而有效地再现了体内药物代谢过程。[12–14]多器官片(MOOC)代表了一种颠覆性解决方案,用于同时研究与药物相关的几个器官的影响,具有巨大的承诺,可以在临时性试验中有效预测药物毒性,并最终防止意外的临床药物安全问题。[8]在这种情况下,Oleaga等人[16]开发了一个由五个腔室组成的Pumpless重力驱动的MOOC平台,该平台可以整合肝脏和心脏模块,能够预测肝脏代谢后的环磷酰胺和Terfena-ninine的心脏毒性副作用。该商业设备也用于药代动力学药物研究[17]另一个例子
AurélienCouette,Camille Tron,LéonardGolbin,Benedicte Franck,Pauline Houssel-Debry等。使用微型缩影设备在他克莫司的曲线下的区域:朝着固体器官移植的精密医学?欧洲临床药理学杂志,2023,79(11),第1549-1556页。10.1007/S00228-023-03566-5。hal-04227953
1。北京第七医学中心临床实验室,北京100700,P.R。中国。 2。 北京IPE临床实验室公司研究与发展部,北京100176,P.R。 中国。 3。 生物化学和分子生物学系,神经和血管生物学的主要实验室,中国教育部,河比医科大学,赫吉亚岛,赫比050017,p.r. 中国。 4。 呼吸科,北京儿童医院,首都医科大学,国家国家临床研究中心,国家儿童健康中心,北京100045,P.R。 中国。 5。 北京医院,北京医院100730,P.R。 中国。 6。 北京老年医学研究所老年医学研究所,老年医学研究所,中国医学科学院,北京医院/国家卫生卫生委员会老年医学中心,北京100730,P.R. 中国。中国。2。北京IPE临床实验室公司研究与发展部,北京100176,P.R。中国。 3。 生物化学和分子生物学系,神经和血管生物学的主要实验室,中国教育部,河比医科大学,赫吉亚岛,赫比050017,p.r.中国。3。生物化学和分子生物学系,神经和血管生物学的主要实验室,中国教育部,河比医科大学,赫吉亚岛,赫比050017,p.r.中国。 4。 呼吸科,北京儿童医院,首都医科大学,国家国家临床研究中心,国家儿童健康中心,北京100045,P.R。 中国。 5。 北京医院,北京医院100730,P.R。 中国。 6。 北京老年医学研究所老年医学研究所,老年医学研究所,中国医学科学院,北京医院/国家卫生卫生委员会老年医学中心,北京100730,P.R. 中国。中国。4。呼吸科,北京儿童医院,首都医科大学,国家国家临床研究中心,国家儿童健康中心,北京100045,P.R。中国。 5。 北京医院,北京医院100730,P.R。 中国。 6。 北京老年医学研究所老年医学研究所,老年医学研究所,中国医学科学院,北京医院/国家卫生卫生委员会老年医学中心,北京100730,P.R. 中国。中国。5。北京医院,北京医院100730,P.R。中国。 6。 北京老年医学研究所老年医学研究所,老年医学研究所,中国医学科学院,北京医院/国家卫生卫生委员会老年医学中心,北京100730,P.R. 中国。中国。6。北京老年医学研究所老年医学研究所,老年医学研究所,中国医学科学院,北京医院/国家卫生卫生委员会老年医学中心,北京100730,P.R.中国。中国。
