预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2024年1月14日发布。 https://doi.org/10.1101/2024.01.11.574744 doi:biorxiv Preprint
神经发育障碍(NDDS)是一组疾病,其中中枢神经系统(CNS)受到干扰,导致不同的神经系统和神经精神科特征,例如运动功能受损,学习,语言,语言或非语言交流。频繁的合并症包括癫痫和运动障碍。DNA测序技术的进步揭示了在越来越多的NDD中鉴定的可识别的遗传原因,强调了需要实验方法研究缺陷基因的需求和与异常脑发育有关的分子途径。然而,通过有限的获取患者衍生的脑组织的机会,可以预防研究特异性分子缺损及其在人脑功能障碍中的靶向方法。在这种情况下,在过去的十年中,干细胞技术和基因组编辑策略的进步导致了大脑器官的三维(3D)体外模型的产生,使人脑发育的精确阶段具有个性化诊断和治疗方法的目的。最近的进展允许生成神经元和非神经元细胞类型的3D结构,并开发全脑或区域特异性大脑器官,以研究体外关键的脑发育过程,例如神经元细胞的形态发生,迁移和连通性。在这篇综述中,我们总结了脑器官技术领域中的新兴方法学方法及其在剖析一系列小儿脑发育障碍的疾病机制的应用,并特别关注自闭症谱系障碍(ASDS)和癫痫性耐药性。
在这篇综述中,我们讨论了使用脑器官来建模中脑及其相关的神经退行性疾病:PD(图1)。PD的标志是在底骨pars compacta中中脑多巴胺能(MDA)神经元的选择性死亡,导致Nigrostriatal途径退化[2]。这在临床上表现为运动缺陷,包括胸肌,僵化,震颤和姿势不稳定性[3]。PD已使用动物模型进行了广泛的研究;此外,从人类多能干细胞(HPSC)中产生人类神经元的能力使PD机制可以在人类环境中进行建模。患者衍生的诱导多能干细胞(IPSC)的产生使多样化的遗传敏感性和治疗反应以及个性化治疗策略的演变得以研究[4]。
尽管用小鼠组织完成了脑器官的第一项工作,但它代表了基于细胞培养的人脑建模之前和之后(Lancaster等,2013)。脑类器官具有高细胞异质性,许多细胞类型都集成到同一系统中。类器官不仅代表了研究健康中神经过程的优势,而且更重要的是在患病的环境中,尤其是那些具有复杂遗传方面的那些在动物中构成挑战的遗传方面。对人类神经系统疾病的临时研究意味着由于遗传背景的多样性,在遗传疾病的情况下,中枢神经系统的结构复杂性(CNS),动物模型缺乏可重复性以及在获得人脑活检方面的困难。大脑器官系统的发展在模仿中枢神经系统的复杂性并克服所有这些缺点方面取得了突破。由各种神经元细胞类型组成的脑器官的细胞异质性,可以彼此连接和相互作用是一个很大的优势。获得患者样品,将其重新编程为干细胞的简单性,并将其用于神经退行性疾病建模,增强其翻译价值和更个性化的方法。IPSC衍生的人脑器官已用于研究脑感染(Qian等,2016),神经系统疾病和神经退行性疾病,例如阿尔茨海默氏病(Chen等,2021)。IPSC衍生的人脑器官已用于研究脑感染(Qian等,2016),神经系统疾病和神经退行性疾病,例如阿尔茨海默氏病(Chen等,2021)。
麻醉对人脑器官的不利影响:一项从分子到组织小牛的综合研究,Ph。D,威斯康星州医学院,细胞生物学,神经生物学和解剖学,康山江,莎拉·洛根,Yasheng Yan简介:对少年动物和儿童的最新研究表明,早期一般性麻醉对脑发育的有害影响,表现为记忆缺陷,学习障碍,学习障碍,心理健康问题。然而,这些作用背后的特定病理改变和机制在很大程度上尚未探索,部分原因是没有合适的人类模型。我们的实验室已推进了诱导的多能干细胞(IPSC)来创建3D大脑器官,从而提供了更具临床相关的人类模型来研究本研究中静脉麻醉丙泊酚对神经毒性的影响。方法:人IPSC用于通过化学定义的培养基中的顺序培养过程来产生脑器官。使用免疫染色来表征这些类器官,用于神经谱系标记和通过贴片夹具的电生理分析。在两个月成熟的情况下,在连续三天内将类带有类器官暴露于临床相关剂量的丙泊酚6小时。二甲基亚氧化二甲基载体用作对照。使用caspase 3活性测定,蛋白质印迹和电子显微镜评估对细胞凋亡和自噬的影响。这些神经元建立了有组织的突触,并表现出功能性谷氨酸能和GABA能电流。此外,通过阵列阵列阵列分析评估丙泊对18,675个基因和信号传导的基因表达谱的影响,并通过实时PCR进行验证以及生物信息学分析。结果:两个月大的大脑器官包括约80%的神经元和20%的神经干细胞以及支持细胞,包括星形胶质细胞,小胶质细胞和少突胶质细胞。丙泊酚剂量和暴露频率取决于诱导的神经毒性。具体而言,暴露于丙泊酚6小时导致裂解的caspase 3表达增加,表明神经凋亡。电子显微镜显示丙泊酚暴露后的自噬和异常线粒体形态。微阵列分析确定了113个mRNA中的差异表达(39个上调,74个下调),生物信息学分析表明其中49个参与了自噬,线粒体应激和神经变性。值得注意的是,7种丙泊酚 - 脱离突触基因与健康和疾病中的35个神经系统发育功能有关,包括钙处理和突触交叉对话。结论:我们的研究证明了丙泊酚对人脑组织的直接毒性作用,揭示了复杂的病理表型和分子机制。mRNA谱的改变,再加上凋亡,自噬和线粒体过程的变化,可能会统称有助于发育神经变性。这些发现强调了IPSC衍生的人脑器官的潜力,是研究丙泊和其他麻醉药的神经发育后果的宝贵模型。这种方法提供了关键的见解,以开发小儿麻醉中更有效的神经保护策略。
在此,我们寻求将我们的技术扩展到人类心脏类器官(心形)的高通量生产,这将避免当前心形生产方案的高劳动力和高成本。我们的项目将以心形工程的几项最新进展 3-5 为基础,并利用我们在心脏生物学 6-8(Riley)和组织发育 9-11(Holländer)方面的专业知识。如果成功,我们的项目将提供一种高通量策略,以可重复且廉价的方式生产心形,从而加速心脏生物学、疾病建模和治疗开发的大规模研究。心血管疾病的高疾病负担——仍然是全球死亡的主要原因 12——凸显了这种工具对心血管研究的潜在影响。
* 通讯作者。gaoqiang@fudan.edu.cn (QG); ydsun@ion.ac.cn (YS); zhouhu@simm.ac.cn (HZ)。† 这些作者对本文的贡献相同。作者贡献:概念化,QG、YS、HZ 和 SJ 方法论,SJ、LF、ZF、GW、DL、YS、ZY、YL、CS、YL、HL、GH 和 JL 形式分析,YS、SJ、LF、ZF、YW、DL、YS、PC、ZY 和 SC 调查,SJ、ZF、GW、DL、YL、CS、GS、YL、YS 和 HL 验证:SJ 和 YL 资源:YL、SZ 和 XZ 可视化,SJ、LF、ZF、YW 和 PC 资金获取:QG、YS、BZ、SJ、YW 和 ZD 项目管理:QG、YS、HZ、SZ、XW、SQ、XZ、GH、JL、JZ 和 XW 监督:QG、YS、HZ、GH、JL 和 JF 撰写 - 原始草稿: SJ、LF、ZF、YW、YS 和 QG。撰写 - 审阅和编辑:QG、YS、HZ、LD、PW、DG、BZ、HR 和 HC
简单总结:卵巢癌 (OC) 由于诊断时已为晚期、治疗耐药性高、复发率高以及缺乏针对性的个性化治疗,是所有妇科恶性肿瘤中死亡率最高的。这需要开发能够根据患者特征模拟各种 OC 亚型的组织学、分子和病理生理学特征的临床前模型。在这种情况下,患者来源的类器官代表了一种新兴模型 (PDO)。PDO 是 3D 动态肿瘤模型,可以从患者来源的卵巢肿瘤组织、腹水或胸腔积液中成功生长。该模型重现了 OC 的异质性,并允许进行药物筛选以及开发新的靶向疗法。本研究的目的是提供有关 PDO 的信息以及细胞外基质 (ECM) 和肿瘤微环境 (TME) 在其发展中的关键作用,以便在卵巢癌患者中实施精准医疗。
§当前地址:美国加利福尼亚州南旧金山的Amgen心脏代谢疾病系Amgen Research。^当前地址:维多利亚州帕克维尔皇家儿童医院默多克儿童研究所3052;墨尔本大学生物医学科学学院生理学系和肌肉研究中心,维多利亚州帕克维尔大学,澳大利亚3010; Novo Nordisk基金会干细胞医学中心(续签),默多克儿童研究所,澳大利亚维多利亚州墨尔本。#当前地址:美国俄亥俄州辛辛那提大学医学中心病理与实验室医学系电子邮件:dadesai21@gmail.com *与Sakthivel Sadayappan,博士学位,MBA,辛辛那提大学心血管健康与疾病部MBA,231 Albert Sabin Way,辛辛那提,俄亥俄州45267,美国。电话:+1 513 558 7498;电子邮件:sadayasl@ucmail.uc.edu
在过去的十年中,Organoid Research进入了黄金时代,表示生物医学景观的关键转变。2023年标志着一个里程碑,在该领域发表了数千篇论文,反映了广泛的增长。然而,在这种新兴的扩张中,对领域的全面而准确的概述显然没有。我们的评论旨在弥合这一差距,提供快速发展的类器官景观的全景。我们从八个独特的有利位置进行了精心分析器官领域,从而利用了我们在学术研究,工业应用和临床实践方面的丰富经验。我们呈现了器官技术进步的深刻利用,这是我们长期参与该领域的基础。我们的叙述遍历了器官的历史起源及其在各个生物医学领域的变革性影响,包括肿瘤学,毒理学和药物开发。我们深入研究器官和前卫技术之间的合成,例如合成生物学和单细胞幻象,并讨论了它们在调整人含有医学,增强高通量药物筛查以及构建生理上唯一疾病模型的人中的关键作用。我们的全面分析和反射性话语可深入研究器官技术的现有景观和新兴趋势。我们聚焦了技术创新,方法论进化和应用的扩展范围,强调了器官在个性化的医学,肿瘤学,药物发现和其他领域的革命性影响。展望未来,我们谨慎地预期器官研究领域的未来发展,尤其是其对个性化患者护理,药物疾病的新途径和临床研究的潜在影响。我们相信,我们的全面审查将成为研究人员,临床医生和对人体医疗策略感兴趣的患者的资产。我们提供了类器官技术的当前和专业能力的广泛视野,包括各种各样的车型和未来应用。总而言之,在这篇综述中,我们尝试对器官场进行全面探索。我们提供可能对当前的研究人员和临床人员有用的反射,求婚和预测,我们希望为塑造这种幻想和快速前进的领域的发展轨迹做出贡献。