未来电动飞机和混合动力飞机对电力的需求不断增加,机载系统的高功率电力转换研究工作一直在进行中。航空系统的安全关键性质使航空电力转换器的可靠性成为关键的设计考虑因素。本文研究了电力电子系统的可靠性,重点研究了关键子部件的寿命限制因素。为起动发电机驱动转换器建模了不同系统电压水平下的电压源功率转换器的可靠性。一个关键的观察结果是,Si IGBT 器件足以满足低压和中压系统(高达 540 V)的可靠性要求。在更高的系统电压(高于 540 V)下,使用 Si IGBT 进行设计需要多级拓扑。在恒定功率曲线驱动中,转换器直流链路中薄膜电容器的磨损故障对系统可靠性的影响最小。在没有增强电压降额的多级拓扑中,系统可靠性主要受宇宙射线引起的随机故障影响。仿真结果表明,在高系统电压 (810 V) 下,带有 SiC mosfet 的 2 L 拓扑在可靠性方面优于基于 Si IGBT 的 3 L 拓扑。
摘要。多代理的编程(MAOP)范式为模型和实施代理人及其组织和环境提供了抽象。近年来,研究人员已开始探索MAOP和面向资源的Web体系结构(REST)的整合。本文通过在Jacamo-Rest上展示了一项持续的工作,这是一项持续的研究,这是一种基于资源的基于资源的网络编程平台JACAMO的抽象。jacamo- reth将多代理系统(MAS)互操作性达到新级别,不仅可以与万维网的服务或应用程序进行交互,还可以通过其他应用程序在其规范中进行管理和更新。要将开发人员界面添加到适合Web的Jacamo中,我们提供了一个关于MAOP规范实体管理的新颖概念观点。我们将其作为编程接口应用程序的中间件进行了测试,该应用程序提供了现代软件工程设施,例如连续部署和MAS的迭代软件开发。
深度卷积神经网络(DCNN)的预训练在视觉情绪分析(VSA)领域起着至关重要的作用。大多数提出的方法都采用在大型物体分类数据集(即 ImageNet)上预训练的现成的主干网络。虽然与随机初始化模型状态相比,它在很大程度上提高了性能,但我们认为,仅在 ImageNet 上进行预训练的 DCNN 可能过于注重识别物体,而未能提供情绪方面的高级概念。为了解决这个长期被忽视的问题,我们提出了一种基于人类视觉情绪感知(VSP)机制的面向情绪的预训练方法。具体而言,我们将 VSP 的过程分为三个步骤,即刺激接受、整体组织和高级感知。通过模仿每个 VSP 步骤,我们通过设计的情绪感知任务分别对三个模型进行预训练,以挖掘情绪区分的表示。此外,结合我们精心设计的多模型融合策略,从每个感知步骤中学习到的先验知识可以有效地转移到单个目标模型中,从而获得显着的性能提升。最后,我们通过大量实验验证了我们提出的方法的优越性,涵盖了从单标签学习(SLL)、多标签学习(MLL)到标签分布学习(LDL)的主流 VSA 任务。实验结果表明,我们提出的方法在这些下游任务中取得了一致的改进。我们的代码发布在 https://github.com/tinglyfeng/sentiment_pretraining 。
原始文章对基于Tele的监督进行为期8周的可行性研究,以对上肢运动性能和功能能力的剧本练习,Subhasish Chatterjee。Abstrac t Background Telerehabilitation,使偏远地区的患者更容易获得康复,并且在运输挑战方面已被广泛实施,以恢复中风。随着通信技术的发展,Telerehabilitation正在成为一个更可行的选择。仍然未知,但是,这种分娩策略在中风患者的康复方面有多成功。在此前瞻性,单组,治疗性试验中的材料和方法,根据选择标准招募了12例患者。在基线签署了签署的患者同意书后,对患者进行了身体评估,并熟悉患者。患者通过现场会议,每周3天接受了基于电视的监督,每周3天,每周3天进行30分钟的监督。在切换任务之前,有30秒的休息时间。分别在基线,第4周和8周干预的基线时采取了结果指标,FMA UE和中套。计算描述性统计数据以获取基线时的人口统计信息和结果度量。为了评估数据的正态性,采用了Shapiro-Wilk测试。由于发现数据是正态分布的,因此进行了重复测量ANOVA和事后分析,以评估小组内基线,第4周和第8周的数据。Bonferroni校正用于解决多个比较。p值小于0.05被认为表明统计学上的显着差异。结果每个结果度量都表明有很大的改善(p <0.05)。根据组内分析,在FMA UE和Mesupes(p <0.001)中观察到了明显的区别。结论基于Tele的以任务为导向的练习有效地改善了中风患者的上肢运动性能和功能能力。
● 编程作业 (25 %) 将会有几项编程作业,涉及 OO 编程、OO 设计和 UML 图。所有作业都是个人作业。逾期的作业将不被接受。 ● 测验 (10 %) 每章之后都会有简短的测验。这些测验的目的是鼓励学生阅读课程材料并理解概念。这些测验的目的是帮助学生更好地理解概念并将其应用于作业以及为期中和期末考试做准备。 ● 项目 (20 %) 每学期最后一个月,每个小组由 3 名成员组成一个小组项目,涉及 OO 设计和 GUI 编程。 ● 期中和期末(各占 20 %) 将会有一次期中考试和一次期末考试,包括选择题和书面答案。问题可以来自测验、课堂笔记、幻灯片、作业和课堂讨论。 ● 课堂参与 (5 %) 为鼓励参与,您的期末成绩的 5% 将来自您的参与。请注意,参与并不等于出席。
通过多种具有多种专业知识和工具的LLM授权代理的合作,多代理系统在解决现实世界中的问题方面取得了令人印象深刻的进步。给定用户查询,需要将查询分解为可以分配给能够求解它们的合适代理的多个子任务中的元代理,以多代理系统的大脑为大脑。在这项研究中,我们确定了面向代理计划的三个关键规定原则,包括解决性,完整性和非差额,以确保可以有效地解决每个子任务,并对对用户查询的满意响应进行质疑。这些原则进一步激发了我们提出的AOP,这是一个新型的多代理系统中面向代理计划的框架,利用快速的任务分解和分配过程,然后通过奖励模型进行有效,有效的评估。根据评估结果,元代理还负责迅速对子任务和调度进行必要的调整。此外,我们将反馈循环集成到AOP中,以进一步提高此类解决问题过程的有效性和鲁棒性。广泛的实验证明了与单一机构系统和多代理系统的存在计划策略相比,AOP在解决现实世界中的问题方面的进步。源代码可在https://github.com/lalaliat/agent-entiented-planning上找到。
摘要 - 机器人技术,高级通信网络和人工智能(AI)的融合具有通过完全自动化和智能运营来转变行业的希望。在这项工作中,我们为机器人介绍了一项新颖的共同工作框架,该框架将面向目标的语义通信(SEMCOM)统一使用在语义意识网络下的生成AI(Genai)代理。SEMCOM优先考虑机器人和网络之间有意义的信息的交换,从而减少了开销和延迟。同时,Genai-Agent利用生成的AI模型来解释高级任务指令,分配资源并适应网络和机器人环境中的动态变化。以新的自主性和智能级别的范围范式引起了这种代理驱动的范式,从而使网络机器人的复杂任务可用于最少的人类干预。我们通过多机器人异常检测用例模拟来验证我们的方法,其中机器人检测,压缩和传输相关信息进行分类。仿真结果证实,SEMCOM在保留关键语义细节的同时大大降低了数据流量,并且Genai-Agent确保了任务协调和网络适应。这种协同作用为现代工业环境提供了强大,高效且可扩展的解决方案。索引术语 - ai-native网络,生成AI代理,网络工作机器人技术,语义通信,变分自动编码器,工作流程
摘要 - 大语言模型(LLMS)中的前进已导致其广泛采用和在各个领域的大规模部署。但是,由于其大量的能耗和碳足迹,它们的环境影响,尤其是在推断期间,已经成为人们越来越关注的问题。现有研究仅着眼于推理计算,忽视了网络辅助LLM服务系统中碳足迹的分析和优化。为了解决这一差距,我们提出了AOLO,这是一个用于低碳导向的无线LLM服务的分析和优化框架。AOLO引入了全面的碳足迹模型,该模型量化了整个LLM服务链中的温室气体排放,包括计算推理和无线通信。此外,我们制定了一个优化问题,旨在最大程度地减少整体碳足迹,该碳足迹是通过在体验质量和系统性能限制下的关节优化推理输出和传递功率来解决的。为了实现这种联合优化,我们通过采用SNN作为参与者网络来利用尖峰神经网络(SNN)的能源效率,并提出了一种低碳导向的优化算法,即基于SNN的基于SNN的深度加固学习(SDRL)。全面的模拟表明,与基准软批评者相比,SDRL算法显着降低了整体碳足迹,降低了18.77%,突出了其实现更可持续的LLM推理服务的潜力。
Geagea Elieve,Daniel-Lopez,Luca Giovanelli,Laurent Nony,Christian Loppacher等。天文台C,2024,128(21),pp.8601-8610。10.1021/acs.jpcc。04729690
在人口不断增长和工业化的背景下,废水污染的抽象处理是一个关键问题。实际的治疗方法很昂贵,不完全有效,并且依赖化石燃料衍生的化学物质,因此要求对天然材料(例如大麻)采用替代性吸附方法。工业大麻(大麻sativa linn)是一种高产的年度工业作物,该农作物是从茎和种子中的油中收获的。大麻是一种多功能植物,由于其多种用途,例如建筑材料,纺织品,纸张,食品和饮料,汽车,化妆品和药物。废水处理是另一种创新应用。的确,过去十年中,在基于大麻的材料的研究中显示了一种爆炸,用于从EF流体中生物吸附金属离子,这表明工业大麻是环境应用最有前途的材料之一。大麻产物可以用作颗粒状或毛毡形式的生物吸附剂,也可以制备非惯性活性碳,均用于生物吸附过程中。在对生物吸附的简要描述后,描述了可以用作污染物生物吸附剂的不同类型的基于大麻的材料。
