在这项研究中,通过比较提出的冷却通道与蛇形冷却通道的热量耗散能力和电池堆栈中U形冷却通道的热量耗散能力来评估圆柱形锂离子电池组的热量耗散系统。提议的冷却通道采用了蛇形设计,其中包括通过电池堆栈的额外途径,从而增强了与电池的热量交换。在第二个配置中,将通道分叉为两个支流,将流体流体交替出现在另一种流出中,从而产生了逆流配置。利用ANSYS Fluent进行模拟和分析,我们确认所提出的设计提供了出色的散热性能,这归因于增加的接触面积。
发布日期:2019年12月12日 |接受日期:2020年7月29日 |出版日期:2021 年 10 月 12 日 Andrea Carolina Pabón-Beltrán 哥伦比亚桑坦德工业大学 Orcid:0000-0003-3877-7678 Felipe Sanabria-Martínez 哥伦比亚材料科学与技术研究人员基金会:dio Vásquez 哥伦比亚桑坦德工业大学 Orcid:0000-0001-6563-0044 José José Barba-Ortega 哥伦比亚哥伦比亚国立大学 哥伦比亚材料科学与技术研究人员基金会 西班牙材料、应用和纳米结构中心 哥伦比亚材料科学与技术研究人员基金会 Orcid:0000-0003-4154-7179 * 研究文章 通讯作者。电子邮件:foristom@gmail.com DOI:https://doi.org/10.11144/Javerina.iued25.scpt
当银行的大量借款人遭受巨大负面冲击时,银行会如何反应?为了回答这个问题,我们利用 2014 年能源价格暴跌,以墨西哥商业银行贷款为例。我们表明,在能源价格下跌后,对能源行业有敞口的银行进一步增加了对这些借款人的敞口,放松了对该行业较大债务人的信贷保证金。银行对能源行业的事前敞口增加一个标准差,对该行业借款人的贷款量增加 18%,利率降低 6%,尽管借款人的信用违约掉期利差正在扩大。高敞口银行通过收缩对其他行业的贷款,将这一行业特定冲击放大到经济的其他部分,产生了重要的实际影响,因为借款人无法更换信贷供应商。最后,能源价格冲击对宏观结果产生了巨大的负面影响,尤其是在资本密集型的二级行业。从数量上看,一个州的银行对能源行业的敞口增加一个标准差,其 GDP 就会下降 1.8%。