抽象转座元素(TES)是基因组变异性的重要来源。在这里,我们通过使用来自Oryza Sativa SSP的208个品种的表达数据来分析了它们对水稻基因表达变异性的贡献。indica和O. sativa ssp。Japonica亚种。我们的数据表明,插入与许多已知是水稻驯化和育种靶标的表达的变化有关。这些插入的重要部分已经存在于大米野生群中,并且在Indica和Japonica水稻种群中被差异化。总的来说,我们的结果表明,由TE诱导的信号转导基因中的表达变化很小,伴随着水稻种群的驯化和适应。
盐胁迫是继干旱之后第二大破坏性非生物胁迫,限制了全球水稻产量。通过遗传增强耐盐性是一种有前途且经济有效的方法,可在盐胁迫地区提高产量。耐盐性育种具有挑战性,因为水稻对盐胁迫的反应具有遗传复杂性,受低遗传力和高 G×E 相互作用的次要基因控制。许多生理和生化因素的参与进一步复杂化了这种复杂性。绿色革命时代以提高产量为目标的密集选择和育种工作无意中导致了控制耐盐性的基因座逐渐消失,品种间遗传变异性显著降低。遗传资源利用有限和改良品种遗传基础狭窄导致现代品种对耐盐性的响应处于停滞状态。野生种是拓宽驯化水稻遗传基础的极佳遗传资源。利用未被充分利用的野生稻近缘种的新基因来恢复驯化过程中被消除的耐盐性位点,可使水稻品种获得显著的遗传增益。野生稻种 Oryza ru fi pogon 和 Oryza nivara 已被用于开发一些改良稻种,如 Jarava 和 Chinsura Nona 2。此外,增加序列信息获取途径和增强对野生近缘种耐盐性基因组学的了解,为在育种计划中部署野生稻种质提供了机会,同时克服了野生杂交中出现的交叉不亲和性和连锁阻力障碍。预育种是构建可用于育种计划的材料的另一种途径。应努力系统地收集、评估、表征和揭示野生稻的耐盐性机制
摘要 尽管靶向基因组编辑技术已成为加速功能基因组学的有力反向遗传方法,但由化学诱变剂诱导的传统突变体文库对于植物研究仍然很有价值。含有化学诱导突变的植物是简单而有效的遗传工具,可以在不考虑生物安全问题的情况下种植。突变体个体的全基因组测序减少了突变体筛选所需的工作量,从而提高了它们的实用性。在本研究中,我们对由用 N-甲基-N-亚硝脲 (MNU) 处理单个受精卵细胞而获得的 Oryza sativa cv. Nipponbare 突变体文库成员进行了测序。通过对该突变体文库中的 266 株 M 1 植物进行全基因组测序,我们总共鉴定出 66 万个诱导点突变。这个结果代表了 373 Mb 组装水稻基因组中每 146 kb 基因组序列中有一个突变。这些点突变均匀分布于整个水稻基因组中,超过 70,000 个点突变位于编码序列内。尽管该突变体文库规模较小,但近 61% 的所有注释水稻基因中均发现了非同义突变,8.6%(3248 个基因)的点突变对基因功能有较大影响,例如获得终止密码子或丢失起始密码子。WGS 表明使用水稻受精卵细胞的 MNU 诱变可有效诱导突变,适用于构建用于计算机突变体筛选系统的突变体文库。扩展该突变体文库及其数据库将提供一种有用的计算机筛选工具,以促进功能基因组学研究,特别是针对水稻。关键词:水稻突变体文库、N-甲基-N-亚硝脲 (MNU)、单核苷酸变体 (SNV)、NGS、计算机 TILLING、水稻、全基因组测序、遗传资源
盐胁迫是多次毁灭性的非生物胁迫,在干旱之后,限制了全球水稻的产量。盐度耐受性的遗传增强是在受盐影响区域实现产量提高的一种有前途且具有成本效益的方法。盐度耐受性的繁殖是具有挑战性的,因为水稻对盐胁迫的反应具有遗传复杂性,因为它受遗传力较低和G×E相互作用高的次要基因的控制。众多生理和生化因素的参与进一步使这种复杂性变得复杂。针对绿色革命时代提高产量的强化选择和繁殖工作无意中导致盐度耐受性的基因座逐渐消失,并显着降低了品种遗传变异性。遗传资源的利用率有限和改善品种的狭窄遗传基础,导致平稳性,以应对现代品种的盐度耐受性。野生物种是扩大驯化水稻遗传基础的绝佳遗传资源。利用未充分利用的野生水稻亲戚的新基因恢复驯化过程中消除的盐度耐受性基因座可能会导致水稻品种的显着遗传增益。大米,Oryza rufinfifogon和Oryza Nivara的野生物种已在开发一些改良的水稻品种的开发中,例如Jarava和Chinsura Nona 2.预生产是准备在繁殖计划中利用的建筑材料的另一种途径。此外,增加获取序列信息的获取和增强对野生亲戚盐度耐受性基因组学的知识为在育种计划中部署野生水稻的部署提供了机会,同时克服了野生杂交中见证的跨不相容性和连锁阻力障碍。努力应针对野生水稻的系统收集,评估,表征和解密的耐盐机制
Pharma Innovation Journal 2023; 12(8):22-31 ISSN(E):2277-7695 ISSN(P):2349-8242 NAAS评级:5.23 TPI 2023; 12(8):22-31©2023 TPI www.thepharmajournal.com收到:19-05-2023接受:25-06-06-2023 Sneahpreet Kour学生,FBSC微生物学系,FBSC,SKUAST- JAMMU,JAMMU,JAMMU和KASHMIR Jammu and Kashmir, India Brajeshwar Singh Associate Professor, Division of Microbiology, FBSc, SKUAST- Jammu, Jammu and Kashmir, India Tanika Mahajan Student, Division of Microbiology, FBSc, SKUAST- Jammu, Jammu and Kashmir, India Arashdeep Kour Student, Division of Microbiology, FBSc, SKUAST-查mu,查mu和印度克什米尔,印度通讯作者:UPMA Dutta Microbiology助理教授,FBSC,Skuast- Jammu,Jammu和Kashmir,印度,
来源选择机构 (“SSA”) 执行了最佳价值确定。AR 2365–69。SSA 表示同意 SSEB 评级,但也解释了为什么 P&S 的 PPI 获得“有点相关”评级可能比 SSEB 摘要中指出的要强。参见 AR 2366(解释 PPI #1 中的过去表现“显然涉及 PPI 的许多其他关键方面”并表现出“对供应和财产管理及问责计划的极其熟练”,并且 PPI #3 与海军服务合同有关,但“实际表现与陆军的 MAIT 计划非常相似”)。SSA 另外指出,Oryza 具有相关经验,并最终表示“综合经验证实了整体‘令人满意的信心’评级。”AR 2367。
与stenotrophomonas一个元素友菌的脱甲基酶(DMO)基因,该基因编码dicamba单氧酶(DMO)蛋白,该蛋白赋予了对Dicamba除草剂的耐受性。它还包含了R-2,4-二氯苯氧基氧化二加氧酶(RDPA)基因的修改版本,该基因编码芳氧化氢的苯二氧化碳(fops)(FOPS)和2,4-二氯苯二氧酸(2,4-D)dioxycy蛋白酶(Ftterers),该版本是芳氧基氧基氧基氧基丙酸酯(FOPS)的。对2,4-D除草剂的耐受性。此外,大豆周一表达了来自链霉菌毒素基因的磷酸蛋白N-乙酰基转移酶(PAT)基因的副本,该基因编码PAT蛋白,该蛋白质赋予了耐受性的耐胶质剂。拜耳还引入了源自Oryza sativa hppd抑制剂敏感1(His1)基因的二氧酶(TDO)基因,该基因表达了TDO蛋白以赋予耐甲替氏酮的耐受性。
摘要:由真菌杂草虫L.引起的大米爆炸被认为是对世界大米生产的主要威胁之一。抗性品种的发展是最好的,可持续的控制替代品之一。植物育种工作已通过遗传图(连锁和关联)和标记辅助选择加速。On the other hand, genomic editing techniques, such as meganucleases (MNs), Zinc-finger nucleases (ZFNs), Transcription Activa tor–like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindrome Repeats/ CRISPR-associated protein 9 (CRISPR/Cas9), can be used to promote specific genetic modifications.同样,转基因也可以用于操纵特定基因。从这个意义上讲,这项工作旨在表征大米爆炸并阐明可用的生物技术替代方法,以加速改善水稻品种对水稻爆炸具有耐药性的发展。关键词:非生物压力,生物技术工具,Oryza sativa L.,pyricularia oryzae L.
简介:甲状腺肥料是自然产生并含有碳的肥料。肥料是实质性的,可以添加到土壤或植物中,以提供营养并维持生长。Jeeva Amrutham由两个词制成:Jeeva和Amrutham。两者均来自梵语。“ jeeva”一词是指生命和“ Amrutham”,是指长生不老药(医学)至延长生命。根据农业观点,Jeeva Amrutham是为了作物生命。这是增加微生物计数的最佳文化。jeeva amrut是一种微生物培养物,主要是由牛粪和牛尿液制成的,通常用于有机农业中,以满足农作物的营养需求。已经证明,在这种稻米(Oryza sativa L.)中使用Jeeva Amrut对产量及其质量更好。jeeva amrut可用于许多农作物(例如小麦(Triticum aestivum),玉米(Zea Mays L.)等。新鲜制备的Jeeva Amrutham本质上是酸性的。
水稻(Oryza sativa L.)是世界范围内广泛种植的重要粮食作物之一。水稻在全球粮食安全中发挥的巨大作用促使研究人员开发具有改良农艺性状的新水稻品种,例如耐受生物和非生物胁迫。 CRISPR/Cas9基因编辑系统由于其高效、易用、高精度,为改善多种作物的农艺性状提供了一种很有前景的策略。本文讨论了CRISPR/Cas9在改良更适应不利环境条件的水稻品种中的应用。利用CRISPR/Cas9系统对水稻抗病(白叶枯病和稻瘟病)、抗除草剂和抗逆(盐、旱、寒)等一系列功能基因和调控基因进行了功能分析。还分析了该技术在水稻上应用的一些局限性和优点。该研究结果概述了基因编辑工具,从而指导其在越南应对气候变化的作物品种研究中的应用。
