人们要求储能系统在电网现代化过程中发挥主导作用 [1-4]。可再生能源 (RES) 的广泛应用以及工业过程的深度电气化对电网提出了重大挑战 [5-11],而大量使用储能系统 (ESS) 可以缓解这一转变。然而,发电和配电中心等电力设施通常并未设计为包含储能,这会导致一些缺点。此外,由于电力电子主导的电网惯性减小,匹配发电和消费的复杂性日益增加 [2、12、13]。为了提高可控性、平稳需求响应、减少能源浪费和电网增强的需要,储能系统是现代电网中必不可少的资产 [13-17]。另一方面,储能系统在微电网概念中也至关重要,微电网概念经过几十年的发展,已经能够适应电网中快速变化的负载和发电机 [18-20]。利用电力电子技术将电力系统聚集成可控、可拆卸的块,可以实现可再生能源、储能系统和负载的分布式集成,并且独立于电网。因此,开发新型集成电力转换器和储能单元仍然是未来电力系统的关键方面之一。为了进一步提高储能系统的能力,可以将不同的储能技术组合成混合储能系统。通过混合超级电容器、电容器和电池,甚至非基于电力的储能机制,可以根据场景利用不同的特性,例如高能量和高功率密度 [21,22]。
这些资源可能会更改,恕不另行通知。ti授予您仅使用这些资源来开发使用资源中描述的TI产品的应用程序。禁止其他繁殖和展示这些资源。均未授予任何其他TI知识产权或任何第三方知识产权的许可证。ti不承担责任,您将完全赔偿ti及其代表,以反对因使用这些资源而产生的任何索赔,损害,成本,损失和责任。
可以将预测性维护归类为(i)预后:预测失败并提前通知替换或修复(剩余使用寿命或简短的RUL通常用作预后方法,这是对设备或系统剩余寿命的估计,直到它变得无功能性[20]); (ii)诊断:通过因果分析或(iii)主动维护来预测未来失败的实际原因:预测并减轻故障模式和条件发展之前[6]。虽然主动维护捕获了潜在失败的根本原因,但预测维护执行了整体数据分析,以确保安排的维护。在本文中,将在预测性维护涡轮增压引擎的背景下进行研究[4,18]。
4.1.6 可追溯性和同质性。除选项 D 外,所有设计谱系均有同质且可追溯至制造商单个晶圆的有源器件批次。扫描石英晶体可追溯至石英棒和高压釜批次的加工细节;但是,多个批次的未镀层晶体、底座和盖子可以组合成单个密封晶体制造批次。仅对于设计谱系 E 和 R,无源元件、晶体和材料可追溯至其制造批次。制造批次和日期代码信息应通过 TCXO 序列号记录每个组件和制造这些 TCXO 所用的所有材料。Microchip 定义的生产批次是所有已组装和制造为单个组的振荡器。具有单个批次日期代码的最大可交付数量为 100 个单位。超过 100 个单位的订单数量将以多个批次日期代码交付,交付间隔为 4 周。如果适用,每个生产批次将配备同质材料,然后将其分配到多个批次日期代码构建中以满足可交付订单数量。订购时,除非采购订单另有说明,否则将在生产批次中的第一个构建批次上执行 C 组检查、批次资格和/或 DPA。
基于AI的虚拟助手越来越多地用于支持日常构想任务。这些代理中存在的值或偏差可以以隐藏的方式影响输出。它们也可能影响人们如何感知具有不同价值一致性的AI代理产生的想法,并导致对基于AI的工具的设计产生影响。我们探索了具有不同值对想法过程的AI代理的影响,以及用户对想法质量,所有权,代理能力和输出中存在的值的看法。我们的研究任务为180名参与者,针对具有不同价值的AI代理的一组问题进行了集思广益的解决方案。结果表明,基于价值对齐的自我评估没有显着差异;但是,脑stormig过程中产生的想法反映了AI的价值观。本论文强调了AI值和人类意识之间的复杂相互作用,为将来的AI支持的头脑风暴工具提出了仔细的设计考虑。
新罕布什尔大学学者的存储库的学生奖学金将为您提供免费和公开访问。新罕布什尔大学学者的授权管理人的授权管理员将其纳入了硕士的论文和cap骨。有关更多信息,请联系Scholarly.Communication@unh.edu。
近期涌现的生成式人工智能 (GAI) 系统(如 Stable Diffusion)可以根据人类提示生成图像,这引发了关于创作权、原创性、创造力和版权的争议性问题。本文重点关注创作权:谁创造了 GAI 帮助下产生的输出并应获得其功劳?现有的关于创作权的观点不一:一些人坚持认为 GAI 系统只是工具,人类提示者才是真正的创造者;其他人更愿意承认 GAI 发挥了更重要的作用,但大多数人都以全有或全无的方式看待创作权。我们开发了一种称为 CCC(以集体为中心的创造)的新观点,以改进这些现有立场。在 CCC 上,GAI 输出首先由集体创建。对创造权的主张有不同程度,取决于所涉及的各种代理和实体(包括用户、GAI 系统、开发人员、训练数据生产者等)的个人贡献的性质和重要性。重要的是,CCC 坚持认为 GAI 系统有时可以成为共同创造集体的一部分。我们详细介绍了 CCC 如何推进现有的辩论并解决涉及 GAI 的创造权争议。
摘要:在本文中,提出了基于硅(gan-on-on-si)上基于氮化壳的KU波段主动雷达应用的微波整体整合电路(MMIC)高功率放大器(HPA)。设计基于三阶段的体系结构,并使用Ommic Foundry提供的D01GH技术实施。以及稳定性和热分析提供了有关最大化交付功率的体系结构定义和设计过程的详细信息。为了优化放大器性能,输出组合仪中包含了不对称性。实验结果表明,HPA达到39.5 dBM脉冲模式输出功率,峰值线性增益为23 dB,排水效率为27%,并且在16-19 GHz频率范围内具有良好的输入/输出匹配。芯片区域为5×3.5 mm 2,用于测量值安装在定制模块上。这些结果表明,基于GAN-on-SI的固态功率放大器(SSPA)可用于实现KU波段活动雷达。
⚫ 工作电压:1.8V 至 5.5V ⚫ 平均静态电流:7uA(典型值) ⚫ 温度精度:10°C 至 30°C 之间为 ±0.35°C(最大值)(K 版本)-50°C 至 150°C 之间为 ±1.0°C(最大值)(K 版本)10°C 至 50°C 之间为 ±1.5°C(最大值)(非 K 版本)-40°C 至 125°C 之间为 ±3.5°C(最大值)(非 K 版本) ⚫ 斜率增益 [mV/°C] 多种选项:CT7035LA,19.5;CT7035LB/J,10.0 CT7035LC,6.25;CT7035LD,-5.5 CT7035LE,-8.2; CT7035LF,-10.9 CT7035LG,-11.77; CT7035LH,-13.6 CT7035LK,-5.8; ⚫输出短路保护 ⚫温度范围:-50°C 至 150°C 3. 应用