USB 适配器 收据打印机 USB 电缆(秤 - 打印机) 支架、壁挂套件和安装支架 RS 232 – USB 转换器 RS 232、RS 485 电缆
我们介绍了最先进的DRAM-DIE读取干扰方法的第一个严格的安全性,绩效,能源和成本分析,该方法在更新(截至2024年4月)中(截至2024年4月)JEDEC DDR5规格中的更新(截至截至2024年4月)在更新中的描述方面被广泛称为“ PRAC”(PRAC)。与先前的最新技术不同,它建议内存控制器发出名为Refresh Management(RFM)的DRAM命令,该命令为DRAM芯片提供了时间来执行其对策,PRAC引入了新的后退信号。PRAC的向后信号从DRAM芯片传播到存储器控制器,并迫使内存控制器到1)停止服务请求,2)发出RFM命令。因此,仅在需要时就发布RFM命令,而不是定期降低RFM的性能开销。我们分四个步骤分析PRAC。首先,我们定义了一个面向安全的对抗访问模式,该模式代表了PRAC安全性最差的案例。第二,我们研究了PRAC的不同形象及其安全含义。我们的安全性分析表明,只要在访问内存位置20次之前,就可以将PRAC配置为安全操作。第三,我们评估了PRAC的性能影响,并使用开源周期级模拟器Ramulator 2.0将其与先前的作品进行了比较。我们的性能分析表明,尽管PRAC在当今DRAM芯片的良性应用程序上的性能开销少于13%,但对于将来的DRAM芯片来说,其性能开销可以达到94%(平均为60个工作负载,平均为85%),这些芯片更容易受到读取令人不安的人。第四,我们定义了一种面向可用性的对抗访问模式,该模式加剧了PRAC的性能开销,以执行记忆性能,这表明这种对抗性模式可以诱发多达94%的DRAM吞吐量和降低系统吞吐量的94%(平均为87%)。我们讨论了PRAC对未来系统和预示未来研究方向的影响。为了帮助未来的研究,我们可以在https://github.com/cmu-safari/ramulator2上开放实施和脚本。
“安装架空变压器”(AE 标准 1315)(包括断路器、保险丝和支架)—EA “安装拉线”(AE 标准 1163 和标准 1169)(包括电线、臂、支架和锚固件)—EA “安装空气开关”(AE 标准 1370)(包括夹具和避雷器)—EA “安装电容器组”(AE 标准 1349)(包括连接器、保险丝、跳线、避雷器和变压器)—EA “安装立管初级和次级”(AE 标准 1360)(包括地上和地下导管到连接点、支架、断路器、保险丝和断路器)—EA “安装路灯”(AE 标准 1945)(包括所有连接和接头)—EA “安装避雷器” (AE 标准 1368)(包括跳线和夹具)—EA “拆除电线杆”—EA “拆除架空电线”—LF “拆除电缆”—LF “拆除路灯”—EA
抽象的现代系统使用受害者刷新来减轻Rowhammer,当侵略者行遇到指定数量的激活时,它会刷新侵略者行的邻居。不幸的是,复杂的攻击模式,例如半双打破受害者 - 消除受害者,使当前系统易受伤害。取而代之的是,最近提出的安全的Rowhammer缓解作用对侵略者而不是受害者采取缓解行动。此类计划采用缓和措施,例如行迁移或访问控制,包括Aqua,SRS和Blockhammer。尽管这些方案仅在几千的Rowhammer阈值下产生适度的放缓,但对于可能在不久的将来可能的较低阈值而言,它们会产生过慢的慢速(15%-600%)。我们论文的目的是在如此低的阈值下实用安全的锤子缓解。我们的论文提供了关键的见解,即由于内存映射而良性应用遇到数千个热行(收到比阈值更多的接收动机),这使得在同一行中将空间近距离线放置在同一行中,以最大程度地提高行 - 掩盖式hitrate。不幸的是,这会导致行接收许多常用线路的激活。我们提出了Rubix,它通过使用加密的地址访问内存,从而打破了线到行映射中的空间相关性,从而将热行的可能性降低了2至3个数量级。有助于行列击球,rubix随机 - 一组1-4行。我们还提出了Rubix-D,该rubix-d会动态更改行对行映射。rubix-d min-模仿热行,使对手更难学习一排的空间邻居。rubix将Aqua的放缓(从15%)降低到1%,SRS(从60%到2%)和重锤(从600%到3%),同时产生小于1千键的存储。
摘要 — 要获得可重构智能表面 (RIS) 的好处,通常需要信道状态信息 (CSI)。然而,RIS 系统中的 CSI 获取具有挑战性,并且通常会导致非常大的导频开销,尤其是在非结构化信道环境中。因此,RIS 信道估计问题引起了广泛关注,并且近年来也成为热门研究课题。在本文中,我们针对一般非结构化信道模型提出了一种决策导向 RIS 信道估计框架。所采用的 RIS 包含一些可以同时反射和感知传入信号的混合元素。我们表明,借助混合 RIS 元素,可以准确恢复导频开销与用户数量成比例的 CSI。因此,与采用无源 RIS 阵列的系统相比,所提出的框架大大提高了系统频谱效率,因为无源 RIS 系统中的导频开销与 RIS 元素数量乘以用户数量成正比。我们还对导频导向和决策导向框架进行了详细的频谱效率分析。我们的分析考虑了 RIS 和 BS 的信道估计和数据检测误差。最后,我们给出了大量模拟结果来验证分析的准确性,并展示了所提出的决策导向框架的优势。
可再生能源在实现碳中和方面发挥着重要作用,各国正努力将可再生能源作为主要电力来源。近年来,可再生能源使用量的增加导致电力系统拥堵,给可再生能源的扩大引入带来了问题。特别是,传统的运行方式有时很难将其他新电源连接到现有的电力系统中。为了解决这个问题,欧洲和北美的一些国家已经引入了新的电力连接系统。(1)在日本,正在考虑日本版的“连接和管理”方案,以审查传统的运行方式,(2)并正在考虑引入一种新的运行技术——动态评级。(3)
随着数据中心、商业房地产和工业设施不断发展,以应对复杂架构、新技术和不断提高的性能要求等挑战,需要强大的物理基础设施来提供运营优势,从而推动业务成果。电缆管理是物理基础设施优化系统可靠性、有效空间利用率和可扩展性的重要考虑因素。Panduit 提供业界领先的电缆布线系统,作为全面、集成的数据中心解决方案的一部分,可有效管理和保护高性能通信、计算和电源线。线篮架空电缆托盘布线系统有助于有效利用空间和提高网络性能,并提供部署速度、结构完整性、电缆保护和易用性。
摘要 — 中性原子是可扩展量子计算架构的一个有前途的选择。长距离相互作用和原生多量子比特门等特性可以减少通信成本和操作次数。然而,用作量子比特的捕获原子可能会在计算过程中以及由于不利的环境因素而丢失。丢失的计算量子比特的值无法恢复,需要重新加载阵列并重新运行计算,从而大大增加了电路的运行次数。存在软件缓解策略 [1],但会慢慢耗尽电路的原始映射位置,并在整个架构中创建更分散的量子比特簇,从而降低成功的可能性。我们通过开发找到所有可到达量子比特(而不是仅相邻的硬件量子比特)的策略来提高灵活性。其次,我们将架构划分为单独的部分,并在每个部分中运行电路,不会丢失原子。如果架构足够大,这会重置电路而无需重新加载整个架构。对于使用 30% 架构的电路,这将在重新加载之前的有效射击次数增加两倍。我们还探索使用这些部分来并行执行电路,将 30 量子比特电路的总体运行时间减少 50%。这些技术有助于形成一套动态的新策略来对抗计算空间丢失的有害影响。索引术语 — 量子计算、中性原子、重新编译
OH 标志和 ES 杆的 CIDH 桩基要求最小摩擦角 (phi) 为 30 度,无粘性土壤的总单位重量至少为 120 pcf,粘性土壤的不排水剪切强度为 1.5 ksf。使用 CIDH 桩基的 OH 标志可以放置在坡度高达 2H:1V 的斜坡上或附近。使用 CIDH 桩基的 ES 杆可以放置在坡度高达 2H:1V 的斜坡上或附近,前提是当 ES 杆放置在 4H:1V 和 2H:1V 之间的斜坡上或附近时,CIDH 嵌入深度增加一个桩直径(标准平面图 ES 11)。