*通讯作者:帕文·雷迪(Pavan Reddy),丹·L·邓肯综合癌症中心,贝勒医学院,德克萨斯州77030,血液学和肿瘤学系,密歇根大学; 3110 CCGC,1500 E. Medical Center Drive,Ann Arbor,MI 48105-1942,美国,reddypr@med.umich.edu或pavan.reddy@bcm.edu,传真: +1-734-647-9271。#这些作者同样贡献。作者贡献:P.R。构思了这项研究。K.S.,H.F.,I.H,A.K,M.R.M。 VDB。 和P.R. 计划,指导研究,分析数据并撰写手稿。 K.S.,H.F.,I.H.,M.B.S.,K.O.W.,E.L.,L.L。和Y.S进行了实验。 R.H.,A.K.,R.R.J。和G.D.分析了16S RNA序列实验。 C.L. 进行了实验和组织病理学分析。 M.H. 和T.M.S. 在结肠粘膜中进行了氧测量。 Y.M.S. 生成了HIF1αFL/FL/FL VILCRE小鼠。 P.R. 监督该项目。K.S.,H.F.,I.H,A.K,M.R.M。VDB。 和P.R. 计划,指导研究,分析数据并撰写手稿。 K.S.,H.F.,I.H.,M.B.S.,K.O.W.,E.L.,L.L。和Y.S进行了实验。 R.H.,A.K.,R.R.J。和G.D.分析了16S RNA序列实验。 C.L. 进行了实验和组织病理学分析。 M.H. 和T.M.S. 在结肠粘膜中进行了氧测量。 Y.M.S. 生成了HIF1αFL/FL/FL VILCRE小鼠。 P.R. 监督该项目。VDB。和P.R.计划,指导研究,分析数据并撰写手稿。K.S.,H.F.,I.H.,M.B.S.,K.O.W.,E.L.,L.L。和Y.S进行了实验。 R.H.,A.K.,R.R.J。和G.D.分析了16S RNA序列实验。 C.L. 进行了实验和组织病理学分析。 M.H. 和T.M.S. 在结肠粘膜中进行了氧测量。 Y.M.S. 生成了HIF1αFL/FL/FL VILCRE小鼠。 P.R. 监督该项目。K.S.,H.F.,I.H.,M.B.S.,K.O.W.,E.L.,L.L。和Y.S进行了实验。R.H.,A.K.,R.R.J。和G.D.分析了16S RNA序列实验。 C.L. 进行了实验和组织病理学分析。 M.H. 和T.M.S. 在结肠粘膜中进行了氧测量。 Y.M.S. 生成了HIF1αFL/FL/FL VILCRE小鼠。 P.R. 监督该项目。R.H.,A.K.,R.R.J。和G.D.分析了16S RNA序列实验。C.L. 进行了实验和组织病理学分析。 M.H. 和T.M.S. 在结肠粘膜中进行了氧测量。 Y.M.S. 生成了HIF1αFL/FL/FL VILCRE小鼠。 P.R. 监督该项目。C.L.进行了实验和组织病理学分析。M.H. 和T.M.S. 在结肠粘膜中进行了氧测量。 Y.M.S. 生成了HIF1αFL/FL/FL VILCRE小鼠。 P.R. 监督该项目。M.H.和T.M.S.在结肠粘膜中进行了氧测量。Y.M.S. 生成了HIF1αFL/FL/FL VILCRE小鼠。 P.R. 监督该项目。Y.M.S.生成了HIF1αFL/FL/FL VILCRE小鼠。P.R.监督该项目。
摘要:我们展示了一种简便的方法,用于批量生产氧化石墨烯(GO)散装修饰的屏幕打印电极(GO-SPE),这些电极(GO-SPE)是经济的,高度可重现的,并提供了分析有用的输出。通过制造具有不同百分比质量掺入(2.5、5、7.5和10%)的GO-SPE,观察到对所选的电分析探针的电催化作用,与裸露的/石墨SPE相比,随着更大的GO掺杂而增加。最佳质量比为10%,达到90%的碳墨水显示出朝向多巴胺(DA)和尿酸(UA)(ua)的电分析信号。×10的幅度比在裸露/未修改的石墨SPE上可实现的大小要大。此外,10%的GO-SPE表现出竞争性低的检测极限(3σ)对DA的DA。81 nm,它优于Ca的裸露/未修饰的石墨SP。780 nm。改进的分析响应归因于居住在GO纳米片的边缘和缺陷位点的大量氧化物种,可用于对内晶的电化学分析物表现出电催化反应。我们报道的方法简单,可扩展性且具有成本效益,可用于制造GO-SPE,该方法表现出竞争激烈的LOD,并且在商业和药用应用中具有重大兴趣。
材料上的特性。15最近,多层材料在表面工程社区中引起了广泛的关注,复合电极的制造也广泛用于LM电极处理。这还涉及增强电极材料的表面和界面,例如,减少金属颗粒的大小,不合适的多孔或分层结构,并与各种纳米颗粒进行修改或功能化表面(例如,,金属,金属氧化物,碳材料和离子/电子导电聚合物)。16 - 19虽然一项重要的研究集中在界面模式cation在改善金属化lms的能量存储和电性能中的作用,但它在自我修复特性方面已被很大程度上忽略了。由于其出色的电绝缘层和高导热率,可以将金属氧化物连接到聚丙烯LMS的表面上,以通过蒸气沉积形成复合的绝缘培养基。该方法不仅在适度地增加了复合lms的相对介电常数,而且在显着增强了电容器核心的热有效性方面。20,21尽管热量的快速耗散是由于电容器的介电损失或自我修复而产生的,但据信复合LMS可以防止在自我控制点附近介电lm的层间粘附,从而在自我控制过程中发挥隔离功能。22,23
对于解决地热井中HPHT条件引起的钻井问题的可能性,需要进行热稳定的地热钻泥系统的发展。这是由于高温对HPHT条件下泥流体的降解影响而发生的。挑战在于设计一种可以承受高压,高温(HPHT)条件的合适钻孔液。本研究旨在提供既便宜又环保的新添加。在应用于HPHT钻井环境时,添加剂有可能匹配或超过现有添加剂的性能。几层石墨烯(FLRGO)是通过根据Hummer方法制备的氧化石墨烯获得的。然后,还用两种类型的纳米颗粒装饰了还原的石墨烯表面,以通过简单的溶液混合技术获取两种不同组合物的纳米复合材料。使用氮化硼(BN)纳米颗粒制备了第一个石墨烯纳米复合材料(RGB),其比率不同,以产生三组从1到3。使用氮化钛(TIN)纳米颗粒获得了第二个(RGBT),其百分比不同,以产生六组从1捐赠至6。The prepared reduced graphene oxide along with its nitrides nanocomposites were intensively investigated using several characterization techniques including scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transfer infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermal gravimetric analysis (TGA).因此,0.2、0.6和1 wt。在高温和压力下(230°C,17000 psi)到(80°C,2000 psi),研究对纳米复合材料均研究了如何影响水基钻孔液的流变学和过滤特性。%用作泥样样品的添加剂,并相对于参考泥浆进行了评估。的结果强调,在温度和压力升高时,带有60%石墨烯的RGBT样品,参考样品塑料粘度,20%硝酸硼和20%氮化钛的含量增强了10%至59%,17%至17%至61%至61%至61%和20%至67%(0.2 wt%),(0.2 wt%),浓度(0.6 wt),(0.6 wt tostive)和(0.6 wt t t t t t t t。同样,产量点分别提高了44%至88%,49%至88%和50%至89%。两种纳米复合材料在HPHT条件下均显着降低了滤液损失。这些发现表明,发达的纳米增强钻孔液可以抵抗高级钻孔操作中遇到的严重条件,并在较高温度下具有更好的热稳定性。
本协议描述了用于测序标准COI标记的实验室协议(即DNA条形码),多路复用多达2,280个标本(24 x 96井板,每个板的一个阴性对照孔),以在牛津纳米孔技术上运行,in 10.4.1在占用量序列仪上流动细胞。所有索引都是通过PCR使用标记的引物来完成的,这意味着图书馆准备仅在单个管中进行,所有2,280个PCR均得到了合并。这是通过不对称索引来完成的,其中带有96个唯一分子标识符(UMIS)的正向引物提供了映射到96孔板的孔,而带有24 UMIS的反向引物则将其映射到板上。
在高电流操作条件下发展高性能的氧气进化反应(OER)电催化剂对于碱性水电解的未来商业应用至关重要。在此,我们准备了一个三维(3D)双金属氧氧化物杂交杂种,该杂交杂种在Ni泡沫(NifeOOOH/NF)上生长,该杂种是通过将Ni Foam(NF)浸入Fe(NO 3)3溶液中制备的。在这种独特的3D结构中,NifeOOH/NF杂种由Crystalline Ni(OH)2和NF表面上的无定形FeOOH组成。作为双金属氧氧化电催化剂,NifeOOOH/NF混合动力表现出极好的催化活性,不仅超过了其他报道的基于NI -FE的电催化剂,而且超过了商业IR/C催化剂。原位电化学拉曼光谱学证明了参与OER过程的活性FeOOH和NiOOH相。从Fe和Ni催化位点的协同作用中,NifeOOOH/NF混合动力在80 C的10.0 mol l 1 KOH电解质下在具有挑战性的工业条件下提供了出色的OER性能,需要在1.47和1.51 V中的潜力,以达到1.47和1.51 V,以达到1.47和1.51 V,以达到超高的催化电流的100和500 mA。2021作者。由Elsevier Ltd代表中国工程学院和高等教育出版社有限公司出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
。但是,裁定设备操作的物理和化学裁定仍未完全揭示。在这项工作中,目的是阐明设备观察到的灵敏度的性质。朝着这个目标,一个物理化学模型,再加上RGO-EGT的实验表征,可以定量地将栅极电极处的生物认知事件与RGO-EGT的电子特性相关联。显示出在栅极电极处发生的生物识别的平衡,以确定RGO通道的表观电荷中性点(CNP)。RGO-EGT实验传递特性的多参数分析表明,识别事件调节CNP电压,过量的载体密度n n和RGO的量子电容。该分析还解释了为什么孔和电子载体迁移率,界面电容,转移曲线的曲率和跨导性对目标浓度不敏感。对生物识别事件晶体管转导的机制的理解是解释RGO-EGT免疫传感器响应的关键,并指导新颖和更敏感的设备的设计。
。cc-by-nc-nd 4.0国际许可证。根据作者/资助者提供了预印本(未经同行评审的认证)提供的,他已授予Biorxiv的许可证,以在2024年2月5日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2024.02.04.578818 doi:Biorxiv Preprint
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月12日。 https://doi.org/10.1101/2025.01.10.632410 doi:Biorxiv Preprint