抽象的脂肪组织是一种重要的内分泌器官,可调节哺乳动物的代谢,免疫反应和衰老。健康的脂肪细胞促进组织稳态和寿命。sirt1是一种保守的NAD +依赖性脱乙酰基酶,通过脱乙酰化和抑制PPAR-γ来负调节成型分化。然而,在小鼠中淘汰小鼠中的米氏干细胞(MSC)不仅会导致成骨的缺陷,而且还导致脂肪组织的丧失,这表明SIRT1在脂肪分化方面也不受欢迎。在这里,我们报告说,MSC中SIRT1功能的严重损害在成脂分化过程中引起了明显的缺陷和衰老。仅在脂肪生成过程中抑制SIRT1时观察到这些,而不是在脂肪生成分化之前或之后施加SIRT1抑制时。细胞产生高水平的活性氧
摘要:在这项研究中,通过电化学方法制备了装饰的NF底物上的钴型Ni(OH)2。使用扫描电子显微镜(SEM),原子力显微镜(AFM),能量分散光谱(EDS),X射线光电学光谱(XPS)和X射线衍射(XRD(XRD)),使用扫描电子显微镜(AFM),能量分散光谱(EDS),X射线散射光谱(EDS)描述了制备材料的表面特性,粗糙度,化学成分和晶体结构。此外,使用衰减的总反射傅立叶变换红外光谱(ATR-FTIR)和拉曼光谱的光学表征技术用于确认PANI的聚合。结果表明,Pani和双金属氧化物/氢氧化物在Bare NF的平坦骨架上凝聚。在碱性培养基中进行氧气演化反应(OER)的Co-Ni(OH)2 /Pani-NF的电催化性能,并且表现出出色的电催化活性,表现出了出色的电催化活性,其过电势为180 mV@20 MA CM-2,带有Tafel Slope 62 mV dec-2 dec-2。TOF(10-2)值确定为1.58 V时为2.49 s-1,突出了Co-ni(OH)2 / pani-nf在催化OER时的内在活性升高。使用计时度测定法(CA)进行24小时的稳定性测试,以完成100 mA cm -2和循环伏安法(CV),对200个循环(CV)进行200个循环,扫描速率为5 mV s -1。结果表明,即使在暴露于这些条件之后,该材料即使在长期接触这些条件后仍保持其电化学性能和结构完整性。这些发现强调了Co-ni(OH)2 /pani-NF是OER的有效且有前途的电催化材料,有可能通过水电解来提高氢产生的效率。
在巴西电基质(2022年为8%)和全球(2021年的61.5%)中存在热电厂。燃烧发动机用于在大多数热电厂中驱动发电机,作为大气发射的主要来源。本研究旨在提出一个模型,允许预先选择这些发动机,并确定最适合获得环境许可的建议标准的模型。使用十二个发动机模型的数据用于评估研究的替代方案。通过R计划利用了计算资源来对数据进行统计分析。与屏幕视图软件的模拟可以调查大气分散场景。研究表明,分散与以下变量具有显着相关性:发射速率,显着性为0.60,烟囱高度为-0.57。It was possible to con- clude that for wind speeds equal to or greater than the local annual average of 2.1 m/s, a distance of 1800 meters to the community (location of the thermal power plant), a flue gas exit speed of 35 m/s, and the analyzed engine standards and design, engines with a NOx emission rate of up to 3.0 g/kWh showed good dispersion values, below 200 mg/Nm 3 of NOx, the standard required by巴西环境立法。因此,只有四个引擎模型符合此条件。
摘要 - 用氧气和碳植入的氮化甘露的氮化岩在室温下显示载体介导的自旋机制。使用Tris(环戊二烯基)Gadolinium前体通过金属有机化学蒸气沉积生长的GD掺杂的GAN显示出普通的霍尔效应,并且在室温下没有浪漫主义。在o或c植入GD掺杂的GAN中,观察到表明载体介导的自旋和铁磁性的异常大厅效应。即使在植入后也保持良好的晶体质量。o和c偏爱间质站点,并在GD掺杂的GAN中占据了深层的受体型状态。由GD掺杂的GAN诱导的gadolinium诱导的室温自旋和铁磁性被占据间隙部位的O和C激活。载体介导的自旋功能的机制显示了对控制和操纵自旋作为氮化壳中的量子状态的潜力。这使gagdn:o/c成为室温旋转和量子信息科学应用的潜在半导体材料基础。在本文中,研究了使用离子植入,使用X射线衍射的结构表征在GD掺杂GAN中掺杂,并研究了使用高级HALL效应的自旋相关测量,并进行了相应的讨论。
背景:1型糖尿病(T1DM)是一种慢性自身免疫性条件,由于氧化应激和代谢失调,可能导致长期并发症。二氧酶-1(PON-1)是一种与高密度脂蛋白(HDL)相关的酶,具有双重活性:芳基酯酶和乳糖酶。这些活动可保护脂质免受氧化损伤。T1DM儿童中PON-1的功能状态可以提供有关氧化应激与酶保护作用之间关系的见解。本研究旨在评估伊拉克T1DM儿童中PON-1的芳基酯酶和乳糖酶活性。方法:招募了67名T1DM的儿童,并与57个年龄匹配的健康对照组进行了比较。测量芳基酶和lactonase的酶促活性以评估PON-1的功能状态。计算二氧化氧酶-1/HDL(PON/HDL)比例以评估脂质保护和抗氧化能力。氧化状态。结果:PON-1活性分析显示,患者组的芳基酶(2.36±1.17)和乳糖酶(21.9±7.31)显着降低,与对照组相比(芳基酶= 4.54±1.84,lactonase = 29.51±9.92)。TOS和OSI明显更高,而患者组的TA则显着降低。Pearson相关性显示HDL-C和芳基酶之间存在正相关(P = 0.002,r = 0.379),HDL-C和LACTONAPE(P = 0.040,r = 0.366)。结论:降低的PON-1活性与T1DM有关,表明增强PON-1或减少氧化应激可能有助于预防糖尿病并发症并改善心血管健康。关键字:抗氧化活性,二氧化烷酶-1,芳基酶,乳糖酶,氧化损伤,I型糖尿病。
摘要:氧化锆(ZRO 2)是一种良好且有前途的材料,由于其出色的化学和物理特性。在用于腐蚀保护层,磨损和氧化的涂料中,在光学应用(镜像,滤波器)中用于装饰组件,用于反伪造的解决方案和医疗应用。ZRO 2可以使用不同的沉积方法(例如物理蒸气沉积(PVD)或化学蒸气沉积(CVD))作为薄膜获得。这些技术是掌握的,但由于固有特性(高熔点,机械和耐化学性),它们不允许对这些涂层进行微纳米结构。本文描述的一种替代方法是Sol-Gel方法,该方法允许使用光学或纳米图形印刷术的无物理或化学蚀刻过程的ZRO 2层进行直接微纳米结构。在本文中,作者提出了一种完整且合适的ZRO 2 SOL-GEL方法,允许通过光学或纳米IMPRINT光刻来实现复杂的微纳米结构,以实现不同性质和形状的基材(尤其是非平面和箔材料的底物)。通过掩盖,胶体光刻和玻璃和塑料底物以及平面和弯曲的底物,通过掩盖,胶体光刻和纳米图光刻来呈现ZRO 2 Sol-Gel的合成以及微纳米结构过程。
由于电解质很难进入纳米多孔还原石墨烯(RGO)电极的纳米构固定空间,因此实现了这些设备的最佳电化学性能是一个挑战。在这项工作中,在电压控制的纳米孔RGO电极的电化学激活过程中研究了界面州现象的动力学,该电化学激活在人体能力和电化学障碍方面导致电化学性能增强。原位/操作表征技术用于揭示激活过程中引入的不可逆材料变化的动力学,包括纳米孔内的离子差异和水的构成,以及含氧组的还原和RGO Interlayer距离的减少。此外,操作技术用于揭示RGO电极的复杂极化依赖性动态响应的起源。研究表明,石墨烯基平面中剩余官能团的可逆质子化/去质子化和阳离子电吸附/解吸过程控制纳米孔RGO电极的假能性能。这项工作为纳米多孔RGO电极的电化学循环过程中发生的表面化学,离子实现和脱染过程之间的复杂相互作用带来了新的了解,从而为设计基于Nanoporor rgo的高强度电极设计了新的见解。
塑料在主要应用领域的普及是在塑料和微塑料形式的环境中造成了污染物的越来越多。现在有超过60亿吨的塑料居住在环境中,现在是二级微型塑料的可用来源。研究着重于处理不同环境条件及其性质变化的塑料/微塑料的降解。尽管是严重的污染物,但仍缺少足够的资源来转变大型塑料的次级微塑料以及如何在过渡之前检测降解水平。本文的简要观点提供了有关塑料,废物塑料,管理系统及其局限性的当前情况的见解。在广告中,还展示了塑料向微塑料过渡的详细解释,其机制以及不同地理条件对降解的影响。此外,除了将来在该领域的研究观点外,还描述了不同聚合物降解指数的可用分析技术。本综述还可以提供对废物塑料及其机制形成微塑料形成的宝贵见解,除了对降解的量化的全面了解。
宏基因组测序是一种最近可行的方法,可以同时表征样品中的ARG,微生物组和病原体的数据,与分离和培养细菌相比,它是一种更有效,更全面的方法。对宏基因组数据的典型分析涉及一种基于组装的方法或基于读取的方法,每种方法都有其自身的好处和限制。宏基因组装配允许对ARGS进行上游或下游研究,并提供对其起源的准确识别。但是,这种方法可能导致信息丢失,因为低覆盖的基因组通常不会组装。相比之下,基于读取的方法可实现所有可用数据的映射,但缺乏探索周围基因组环境或提供准确分类分类的能力。为了应对这些挑战,我们开发了Balrog-mon,这是一种多功能且可重现的NextFlow管道,用于测量病原体和元基因组长阅读测序的ARG,提供“组装”和“无装配”工作流程选项。
摘要三氧化铀UO 3具有弯曲的铀酰,UO 2 2+的T形结构,由赤道Oxo协调,O 2-。阳离子UO 3 +的结构相似,但具有赤道oxyl,o• - 。中性和阳离子铀三氧化物由硝酸盐协调的。CID的硝酸铀酰,[UO 2(NO 3)3] - (复杂的A1),消除了2号no 2以产生硝酸盐配位的UO 3 +,[UO 2(o•)(o 3)2] - (b1),它弹出3号no 3以在[uo 2(o 2(o)(否3)(否3)(c1)中,它会产生3号。最后,C1与H 2 O相关联,以在[UO 2(OH)2(no 3)]](D1)中提供氢氧化物。B1,C1和D1的IRMPD IRMPD证实了由硝酸盐配合的铀酰和以下配体:(b1)自由基Oxyl O• - ; (C1)Oxo O 2-; (d1)两个羟基,哦 - 。 由于硝酸盐是二齿,赤道配位为A1中的六个,B1中的五个,D1中的四个,C1中的四个。 低坐标C1中的配体充血表明轨道定向键合。 C1中赤道氧的水解体现了UO 3中的反式反式影响,UO 3中是铀酰,带有惰性的轴向氧和反应性赤道甲氧蛋白。 铀酰ν3ir频率表示以下供体排序:o 2- [最佳供体] >> o• - > oh--> oh-> no 3-。IRMPD证实了由硝酸盐配合的铀酰和以下配体:(b1)自由基Oxyl O• - ; (C1)Oxo O 2-; (d1)两个羟基,哦 - 。由于硝酸盐是二齿,赤道配位为A1中的六个,B1中的五个,D1中的四个,C1中的四个。低坐标C1中的配体充血表明轨道定向键合。C1中赤道氧的水解体现了UO 3中的反式反式影响,UO 3中是铀酰,带有惰性的轴向氧和反应性赤道甲氧蛋白。铀酰ν3ir频率表示以下供体排序:o 2- [最佳供体] >> o• - > oh--> oh-> no 3-。