蒂姆也感谢Cilis的工作人员 - 凯瑟琳·泰勒(Kathryn Taylor),阿德·苏哈托(Ade Suharto),海伦·帕萨克(Helen Pausacker),泰莎·肖(Tessa Shaw)和维基·艾克(Vicky Aikman),为这本书提供了支持的机构基础。西蒙同样感谢悉尼大学法学院及其同事在亚洲和太平洋法中心的同事,无论是在综合方面还是鼓励了这一项目。该书的研究部分由蒂姆的联邦奖学金(项目no FF0668730)以及西蒙的澳大利亚研究委员会后博士奖学金(项目no DP110104287)和未来奖学金(Pro-ject no FT150100294)提供资金。我们都感谢牛津大学出版社邀请我们写它。我们还感谢Sri Astari Rasjid,因为她慷慨解囊,让我们能够在封面上使用她的令人回味的绘画“ Saraswati的新任务”。
抽象的个人迷幻经历在迷幻的治疗师中很常见,通常被认为是培训的必要方面:只有个人迷幻经验才能使迷幻治疗师能够正确地指导患者通过自己的迷幻经验,真正了解这种经验,并帮助他们将其整合到生活中。但这真的是真的吗?本文研究了治疗师个人迷幻经历的价值,为什么这种价值可能高于其他精神药物的个人经验,以及它是否证明对迷幻治疗师的个人迷幻经验的要求是合理的。该分析也考虑了有关治疗师在接受治疗或心理治疗的精神障碍的个人经历的文献,得出的结论是,当前的证据不能证明使个人迷幻(类似)经验是对迷幻治疗师的要求。但是,由于治疗师的个人迷幻经历对治疗师和患者都可能是有价值的,并且由于伤害的可能性很低,因此应该有机会在培训期间获得迷幻经验的机会。
讲师和讲座摘要(每个讲师都有两个1小时15分钟的插槽)Tracy Northup - 离子捕获和腔离子陷阱使我们能够对原子离子的运动和电子状态进行精确控制;空腔使我们能够对单个光子进行精确的控制。我们将研究这两个系统如何为在单个量子的水平上的光与物质之间的接口提供基础。我们如何在这样的接口中描述连贯的过程?我们如何描述与环境的互动?我们从过去几十年来的具有里程碑意义的实验中学到了什么,今天有哪些问题可以回答什么?这些问题和其他问题将被解决。jean dalibard - 这些讲座中的连贯物质波,我将提出一些与量子气体有关的显着现象,包括它们的超流体特性以及拓扑结构(例如孤子和涡流)的稳定。i将展示如何使用量子气体混合物的可能性大大丰富了可观察到的现象的范围,并讨论围绕这些系统进行的一些最新实验。Michel Brune-基于单个Rydberg原子阵列的光学镊子和Rydberg原子模拟器的量子模拟已成为量子模拟和量子信息处理的领先平台之一。它基于光学镊子中基态原子阵列的制备,并提升为Rydberg水平,提供了受控的长距离相互作用。它也导致光的极化的纵向成分,从根本上改变了相互作用的性质。讲座将介绍该平台和当前成就,包括许多旋转系统的身体物理和应用程序以结合问题。将讨论性能限制,我将证明使用圆形的rydberg原子而不是低角度动量,人们对长时间尺度上的量子模拟进行了令人兴奋的观点,以量子rauschenbeutel arno rauschenbeutel-轻度 - 轻度耦合 - 通过量子纳米量和光学的量子构成量子和光学的微型量子,并提供量子的量子,并提供了量子的量子,并提供了量子的含量,并提供了量子的含量,并提供了量子的含量。进入纳米结构。从技术的角度来看,这很有吸引力,因为它可以实现可靠的量子应用,例如量子光源或量子模拟器。令人惊讶的是,这种光子纳米结构提供的光的紧密限制不仅会强烈提高光发射器的相互作用强度。特别是,相互作用强度可以依赖于向前和向后的光的传播方向。在这种情况下,人们还谈到了光和发射器之间的手性耦合。在我的演讲中,我将介绍量子纳米光子学中光结合的理论和实验基础,并讨论从这个快速发展的领域中出现的一些新功能和应用。大卫·卢卡斯(David Lucas) - 第一次讲座中的离子陷阱和量子计算,我将介绍射频保罗陷阱的基础(通常用于量子计算设置),被困的离子量子码和量子逻辑门。在第二堂课中,我将描述如何通过将它们与单个光子接触到光纤链接上的捕获离子;这是将量子处理器扩展到大量Qubits的一种可能方法。我将使用我们在牛津建造的两节点离子陷阱网络实验提供一些量子网络应用程序的示例。
“多种形式痴呆的基础是神经变性,这通常表示大脑灰质的破坏。使用常规序列的当前大脑MRI具有有限的表征灰质的能力。这更具挑战性,因为灰质是一条厚的组织丝带,厚度只有2-5毫米。“要成功,成像方法必须具有足够的空间分辨率和对伴随神经变性的灰质变化的敏感性。牛津大脑诊断技术已经开发了一种新的软件分析工具(FDA 510K待处理),该工具对大脑灰质中的神经元变性更敏感,从而支持早期诊断出多种形式的神经退行性疾病,例如阿尔茨海默氏病,如阿尔茨海氏病,后层层状贫血和额外的额叶dementia,包括supporemalal dementia。
反应物的质量始终等于产物的质量,但是在反应过程中,质量似乎已经丢失或获得。如果在反应过程中释放出气体,则质量似乎已经丢失。如果物质与气体反应,则似乎已经获得了质量。您的笔记
©作者2025。由牛津大学出版社代表环境毒理学与化学学会出版。保留所有权利。有关权限,请发送电子邮件:journals.permissions@oup.com
摘要在这项工作中,将牛津纳米孔测序作为量化放大DNA异质性的可访问方法。此方法可以快速量化缺失,插入和取代,每个突变误差的概率及其在复制序列中的位置。放大技术测试的是传统的聚合酶链反应(PCR),具有不同水平的聚合酶保真度(OnETAQ,phusion和Q5),以及滚动圆扩增(RCA)和PHI29聚合酶。还评估了使用细菌扩增的质粒扩增。通过分析每个样本中大量序列中误差的分布,我们检查了每个样本中的异质性和误差模式。该分析表明,Q5和渗流聚合酶表现出在扩增的DNA中观察到的最低错误率。作为二级验证,我们分析了使用细胞游离表达与放大DNA合成的SFGFP荧光蛋白的发射光谱。易易受错误的聚合酶链反应证实了报道蛋白发射光谱峰宽度与DNA误差率的依赖性。所提出的纳米孔测序方法是量化其他基因扩增技术准确性的路线图,从而使它们被发现,从而实现了所需蛋白质的更无均匀的细胞表达。
本协议描述了用于测序标准COI标记的实验室协议(即DNA条形码),多路复用多达2,280个标本(24 x 96井板,每个板的一个阴性对照孔),以在牛津纳米孔技术上运行,in 10.4.1在占用量序列仪上流动细胞。所有索引都是通过PCR使用标记的引物来完成的,这意味着图书馆准备仅在单个管中进行,所有2,280个PCR均得到了合并。这是通过不对称索引来完成的,其中带有96个唯一分子标识符(UMIS)的正向引物提供了映射到96孔板的孔,而带有24 UMIS的反向引物则将其映射到板上。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月12日。 https://doi.org/10.1101/2025.01.10.632410 doi:Biorxiv Preprint
塑料在主要应用领域的普及是在塑料和微塑料形式的环境中造成了污染物的越来越多。现在有超过60亿吨的塑料居住在环境中,现在是二级微型塑料的可用来源。研究着重于处理不同环境条件及其性质变化的塑料/微塑料的降解。尽管是严重的污染物,但仍缺少足够的资源来转变大型塑料的次级微塑料以及如何在过渡之前检测降解水平。本文的简要观点提供了有关塑料,废物塑料,管理系统及其局限性的当前情况的见解。在广告中,还展示了塑料向微塑料过渡的详细解释,其机制以及不同地理条件对降解的影响。此外,除了将来在该领域的研究观点外,还描述了不同聚合物降解指数的可用分析技术。本综述还可以提供对废物塑料及其机制形成微塑料形成的宝贵见解,除了对降解的量化的全面了解。