自 2011 年首次合成 MXene 以来,MXene 的安全且可扩展的生产一直是一个重要但难以实现的目标 1 。MXene 是二维纳米材料,通式为 M n+1 X n T z ,其中 M 是早期过渡金属(通常是 Ti、Nb 或 V),X 是碳和/或氮,T z 代表表面终止(例如 -F、-Cl、-OH、-O)。MXene 源自一种称为 MAX 相的母材料,该母材料将 M-X 与来自周期表 13-16 2,3 族的层间 (A) 元素结合在一起。已经合成了 50 多个 MAX 相;但是,只有一些 MAX 相可以通过传统的酸蚀技术剥离成感兴趣的二维 MXene 纳米片。之前的研究大多集中在 Ti 基 MXenes 上。MXene 纳米片可用于储能、催化、EMI 屏蔽、传感器和复合材料 4-10 等一系列应用。高浓度氢氟酸 (HF) 通常用于从 MAX 相中选择性去除 A 层以生产 MXenes。其他方法通常使用盐形成原位 HF 溶液,例如将氟化锂 (LiF) 和盐酸 (HCl) 结合或使用氟化氢铵 (NH 4 )HF 2 1,11 。然而,使用水性氟化物蚀刻剂具有许多固有的风险和挑战。与处理 HF 相关的危害使得 MXene 合成工艺难以扩大到商业水平。酸蚀 MXene 合成路线的另一个缺点是废物管理 12 。此外,传统的 HF 酸蚀技术仅限于少数 MAX 相,因此需要
通过对电荷传递,状态的电子密度和相互作用系统的电荷密度差异的全面分析,进行了第一个原理计算,以研究CO在TI装饰的Cr 2 TIC 2 O 2 MXEN单层上的催化氧化。By comparing the reaction energy barriers, it is found that, rather than the traditional Langmuir–Hinshelwood, Eley–Rideal, and Mars-van Krevelen (MvK) mechanisms, the CO oxidation favours a new variant of the MvK mechanism, in which the anchored Ti atom activates the surface oxygen to spill over from the substrate and take part in the CO oxidation.这项工作强调了激活外国金属原子Mxene表面氧原子以改善催化活性的重要性,并建议进一步研究新的MVK氧化机制的CO氧化机制可能值得。
摘要 原发性阿米巴脑膜脑炎 (PAM) 是一种由自由生活的阿米巴原虫 Naegleria 引起的迅速致命的感染。阿米巴沿着大脑神经迁移到大脑,导致癫痫、昏迷并最终导致死亡。先前的研究表明,N. fowleri 的近亲 Naegleria gruberi 更喜欢将脂质而不是葡萄糖作为能量来源。因此,我们测试了几种已经批准的脂肪酸氧化抑制剂以及目前使用的药物两性霉素 B 和米替福新。我们的数据表明,乙莫克舍、奥利司他、哌克昔林、硫利达嗪和丙戊酸可抑制 N. gruberi 的生长。然后我们在 N. fowleri 上测试了这些化合物,发现乙莫克舍、哌克昔林和硫利达嗪是有效的生长抑制剂。因此,脂质不仅是N. gruberi 的首选食物来源,而且脂肪酸的氧化似乎对N. fowleri 的生长也至关重要。抑制脂肪酸氧化可能带来新的治疗选择,因为硫利达嗪可以在感染部位达到的浓度下抑制N. fowleri 的生长。它还可以增强目前使用的治疗方法,因为棋盘分析显示米替福新和乙莫克舍之间存在协同作用。应进行动物试验以确认这些抑制剂的附加值。虽然针对这种罕见疾病开发新药和进行随机对照试验几乎是不可能的,但抑制脂肪酸氧化似乎是一种有前途的策略,因为我们展示了几种正在或曾经使用的药物的有效性,因此将来可以重新用于治疗 PAM。
摘要:有机氧化还原活性聚合物是替代储能设备的电极材料,因为它们的可持续性可能更高,其结构和电荷存储机制的可变性。氧化还原活性部分的结构设计可以显着调整所得材料的电化学性能。我们通过合成基于势噻嗪(PT)的聚合物来展示这种策略,其中通常将通常无法访问的第二个氧化(朝向dication)解锁,以用于传统的碳酸盐电解质,由PT核的供体取消构造。所得的交联聚合物聚(N-速率3,7-二甲氧基苯噻嗪)(X-PSDMPT)在LI半细胞中的两个氧化过程中均表现出色,这使得能够使用第一个氧化阳离子的氧化剂和第二个氧化剂来制造对称的全有机阴离椅电池的对称性全有机阴离椅电池,并在第二个氧化剂上进行了反应。所产生的全细胞以1 C的充电速率传递了Q规格= 60.3 mAh G正-1的特定能力,以超高率(100 C)以及出色的循环稳定性,容量保留为40%。关键字:氧化还原聚合物,全有机电池,对称全细胞,P型氧化还原活性组,势噻嗪■简介
摘要:利用活塞流反应器,实验研究了三种对称柴油沸程醚异构体的燃烧动力学。这些异构体分别是二正丁基醚 (DNBE)、二异丁基醚 (DIBE) 和二仲丁基醚 (DSBE)。流动反应器实验采用氧气作为氧化剂,氦气作为稀释剂,氧化在大气压和高压条件下进行,温度从 400 到 1000,间隔为 20 K。燃料、氧化剂和稀释剂的流速在不同温度下变化,以在化学计量条件下保持恒定的初始燃料摩尔分数 1000 ppm,停留时间为 2 秒。反应产物用气相色谱 (GC) 分析。根据结构,醚表现出不同程度的负温度系数 (NTC) 行为。然后将 GC 分析的形态结果与使用现有和新开发的化学动力学模型的模拟结果进行比较。大多数模拟产物浓度与实验数据具有合理的一致性。化学动力学模型用于阐明不同异构体的反应性和 NTC 行为的主要特征。化学动力学分析表明,三种异构体的燃烧行为受低温反应过程中形成的关键物种的影响。在常压下,DNBE、DIBE 和 DSBE 确定的关键物种分别是正丁醛、异丁醛和仲丁醇。
简介 肝脏中脂质的代谢、储存和流动在饥饿、饮食引起的肥胖、糖尿病和非酒精性脂肪性肝炎 (NASH) 中起着核心作用。肝脏在从头脂肪生成的主要位点和脂质氧化的主要位点之间切换时,脂质代谢的动态范围非常大。脂质合成、吸收、输出和氧化的平衡在代谢综合征的进展和发病机制中起着至关重要的作用,对于脂肪肝和 NASH 的发病率不断上升尤为重要。然而,就脂质代谢的作用而言,控制从正常代谢生理向病理生理转变的机制尚不清楚。从头合成或从饮食中吸收的脂肪酸以甘油三酯 (TG) 的形式储存在脂质滴中,并在能量不足时被动员起来,为线粒体的氧化代谢提供脂肪酸。在大多数情况下,甘油三酸酯水解酶脂肪甘油三酸酯脂肪酶 (Atgl;也称为 Pnpla2、desnutrin) 会调节甘油三酸酯从甘油三酸酯中释放脂肪酸 (1, 2)。Atgl 是甘油三酸酯水解中的第一个速率设定酶 (1–3),Atgl 或其辅激活剂 Cgi-58 的突变会导致人类中性脂质储存病 (4, 5)。这些疾病以及小鼠中 Atgl 的完全丧失会导致线粒体脂肪酸氧化缺陷。无法调动甘油三酸酯会导致线粒体缺乏脂肪酸并限制氧化代谢。此外,甘油三酸酯水解缺陷已显示表现出显著的转录缺陷 (3, 6–10)。也就是说,脂肪酸从脂质滴中释放是 Ppar α 介导的脂肪酸氧化转录编程调节的重要调节因子。因此,Atgl 对于提供脂肪酸氧化的底物和协调维持脂肪酸氧化所需的转录程序都很重要。脂肪酸在线粒体中被氧化,为肝细胞提供 ATP 和 NADH,以促进糖异生并产生乙酰辅酶 A,即生酮作用的碳底物。这使得肝脏能够缓冲血糖并在食物匮乏期间为高度氧化的组织提供替代燃料(酮体)。脂肪酸氧化在许多生物过程中的重要性从导致人类疾病的该途径中的多个突变中可以看出(11)。长链脂肪酸 β 氧化受活性脂肪酸(酰基辅酶 A)从细胞质到线粒体基质的受控易位控制。这是由连续的酰基转移酶肉碱棕榈酰转移酶 1 和
情绪障碍,包括重度抑郁症(MDD)和双相情感障碍(BD),是普遍且致残的精神疾病(1)。情绪障碍的患者表现出由遗传和环境因素的复杂相互作用引起的症状(2-4)。尽管有很多发现,涉及各个级别的结构和功能改变,从微结构和分子途径到神经网络,但对抑郁症基本机制的理解仍然很少(4)。最近的证据表明,情绪障碍与几种机制有关,包括表观遗传调节和氧化应激,这可以触发基因组材料中的各种修饰,例如DNA甲基化或氧化(3,5,6)。表观遗传调节包括控制基因表达的机制,而DNA核苷酸序列没有任何变化。越来越多的报告表明表观遗传机制,例如DNA甲基化,组蛋白修饰和非编码RNA可能在情绪障碍的发病机理以及对药理干预措施的反应中起关键作用(3、5、7、8)。在表观遗传机理中,DNA甲基化是情绪障碍中最广泛的研究,涉及将甲基添加到DNA分子中。DNA甲基化改变经常在抑郁症患者中显示(9)。除了甲基化变化外,DNA还易于自由基氧化,从而导致氧化引起的DNA损伤。以前的证据支持氧化诱导的DNA损伤在抑郁症的发病机理中存在(10 - 13)。但是,这些发现仅基于核遗传物质在内的核DNA和RNA的修改。线粒体是半自治的细胞器,其中包含其自己的,圆形的,母体遗传和双链(即重和轻链)线粒体DNA(mtDNA),并用作人体的主要能量供应。mtDNA编码属于电子传输链复合物,22个转移RNA和2个核糖体RNA的13个多肽,并包含一个非编码区域,其中包括位移环(D-Loop)(14,15)。mtDNA的改变可能会导致线粒体基因表达的变化,从而影响人体的线粒体功能和生物能调节,从而导致线粒体功能障碍(16)。线粒体功能障碍已被确定为抑郁症各个方面的关键机制之一,例如精神症状和神经认知异常以及早期衰老(17,18)。先前的研究报告了MDD和BD(19,20)中线粒体代谢产物,基因或蛋白质水平的异常,并提出了类似的线粒体功能障碍,这些疾病之间的线粒体功能障碍(21 - 23)。尽管mtDNA比核DNA更容易受到基因组修饰的影响(例如甲基化和氧化)(24,25),但识别mtDNA修饰,
摘要:使用O 3(臭氧)和SOCL 2(硫代氯化物)的顺序暴露证明了钼(MO)的热原子层蚀刻(MO)。原位石英晶体微量平衡(QCM)研究对溅射的Mo涂层QCM晶体进行。QCM结果表明,在短暂蚀刻延迟后,Mo Ale显示出线性质量下降与啤酒周期。每次o 3暴露都会观察到明显的质量增加。每次SOCL 2暴露都会发生巨大的质量下降。Mo Ale的每个周期的质量变化(MCPC)是在长时间的SCOL 2暴露后是自限制的。MCPC随着3个暴露时间的较长而增加。原位QCM研究表明,这种软饱和度更长的O 3暴露于Mo的扩散限制氧化引起的。mo蚀刻速率随蚀刻温度逐渐增加。在饱和条件下,在75、125、175和225°C时,mo蚀刻速率分别为0.94、5.77、8.83和10.98Å/循环。X射线光电子光谱(XPS)和原位四倍质谱法(QMS)研究进行了研究,以了解反应机制。XPS在150°C下暴露于O 3后主要在MO表面上显示MOO 3。从QMS研究中,当MO在200°°C中接触MO在MO中暴露于SOCL 2时,监测了挥发性SO 2和MOO 2 Cl 2。这些结果表明,这些结果表明,通过氧化和脱氧氯次反应发生。mo用O 3氧化为MOO 3。随后,MOO 3经历了脱氧氯化反应,其中SOCL 2接受氧气产生SO 2并捐赠氯以产生MOO 2 Cl 2。Additional QCM experiments revealed that sequential exposures of O 3 and SO 2 Cl 2 (sulfuryl chloride) did not etch Mo at 250 ° C. Time-resolved QMS studies at 200 ° C also compared sequential O 3 and SOCl 2 or SO 2 Cl 2 exposures on Mo at 200 ° C. The volatile release of MoO 2 Cl 2 was observed only using the SOCl 2 deoxychlorination reactant.原子力显微镜(AFM)测量结果表明,MO表面的粗糙度与Mo Ale循环缓慢增加。
水氧化被认为是人工光合作用中水分分裂的瓶颈,由于其在可再生能源技术中的潜在影响,它在半个世纪中受到了不断的关注[1 E 3]。在各种水氧化催化剂(WOC)中,据信多氧盐(POM)是具有较高离职频率的活性物种之一。最多研究的POM作为WOC是含四硫乙烷的POM,在同质和异质电化学驱动的水氧化条件下已在同质和异质性的电化学[4,5]中进行了测试[4,5]。然而,唯一的自然稀缺性大规模限制了其进一步的应用。因此,寻找强大,有效和廉价的WOC似乎是主要挑战之一。在各个WOC中,基于锰的
摘要:使用水电解的绿色氢的生产被广泛认为是最有前途的技术之一。另一方面,氧气进化反应(OER)在热力学上是不利的,需要显着的超电势才能以足够的速度进行。在这里,我们概述了重要的结构和化学因子,这些因素和化学因子影响了代表性的镍铁氧体改性石墨烯氧化石墨烯电催化剂在有效的水分分裂应用中执行。修饰原始和氧化石墨烯的镍铁素体的活性是根据其结构,形态和电化学性质彻底表征的。这项研究表明,Nife 2 O 4 @Go电极对尿素氧化反应(UOR)和水分分割应用都有影响。Nife 2 O 4 @Go被观察到,当电流密度为26.6 mA -CM -2在1.0 m尿素中,1.0 m KOH,扫描速率为20 mV s -1。为UOR提供的TAFEL斜率为39 mV dec -1,而GC/Nife 2 O 4 @Go电极到达10 mA CM -2 -2