维罗妮卡·波萨-诺盖拉斯、艾丽西亚·戈米斯-贝伦格尔、玛尔塔·帕佐斯、玛丽亚·安吉利斯·桑罗曼、康奇·玛丽亚·康塞普西翁·奥文·阿尼亚。探索利用碳材料作为阴极在电化学高级氧化过程中降解抗生素。环境化学工程杂志,2022,10 (3),第 107506 页。 “10.1016/j.jece.2022.107506”。 �hal-03827350�
电化学 (EC) 和光电化学 (PEC) 水分解代表了可再生能源转换和燃料生产的有前途的策略,并且需要设计用于氧析出反应 (OER) 的高效催化剂。在此,我们报告了二维 (2D) 钴基金属有机骨架 (Co-MOF) 纳米片的合成及其对 EC 和 PEC OER 的双功能催化性能。得益于大的表面积和丰富的孤立金属活性位点,Co-MOF 纳米片表现出优异的 OER 活性和稳定性。由于尺寸限制,纳米片高效的电子-空穴产生和分离有助于改善 PEC OER 中的可见光响应。这项研究提出了一种利用 2D MOF 独特的结构和电子特征来设计 EC/PEC 双功能催化剂的新策略。
基于微电极上葡萄糖电氧化的紧凑型电化学装置[1-4]具有广泛的应用范围,包括食品工业(果汁中葡萄糖含量的分析)[5,6]和医学(作为植入式心脏刺激器的电源和血液中的葡萄糖传感器)[7-10]。在宏观紧凑电极上最大化电流(和功率)密度的一种方法依赖于纳米结构表面,这增加了电化学活性的比表面积。纳米多孔阳极氧化铝(AAO)提供了一个有趣的模板系统,可通过涂敷电催化剂来创建此类电极。它们平行的圆柱形孔隙的几何形状有利于在紧凑的体积中提供高表面积,同时允许有效地往返于表面的运输,从而优化系统的整体催化活性[11-13]。 AAO 作为模型模板系统最吸引人的特点是可以根据制备参数(阳极氧化电压和持续时间、电解质类型、随后的各向同性化学蚀刻)直接控制几何参数(孔径和长度、孔间距)[14,15]。AAO 模板合成的制备技术得到了广泛的研究:开发了不同质量的合成方法
通过将APE与机器学习的原子间电位(MLIP)整合在一起,研究人员将其应用于钯表面的早期氧化,这是污染控制的关键系统。当应用于钯表面的早期氧化(用于减少排放量的催化转化器中的关键材料)时,APE发现了近3,000种过程,远远超过了传统KMC模拟的能力。这些发现揭示了在催化中类似于分子过程的时间尺度上发生的复杂原子运动和重组过程。
羟基自由基(OH)作为中央大气氧化剂,控制甲烷的去除速率,一种强大的温室气体。建议通过气候政策减少OH水平随着氮氧化物和臭氧水平的降低而降低,但这仍然不安。在这里,我们表明,由碳中立性承诺驱动的,全球均值OH浓度源自多个化学气候模型模拟,预计在2015年 - 2100 - 2100年期间每年的趋势为0.071- 0.16%。这种OH增强的主要原因是一氧化碳和甲烷浓度的急剧下降,从而减少了OH水槽。OH的增加将甲烷的寿命缩短了0.19-1.1年,随后减少了甲烷的辐射强迫。如果在很大程度上不受限制的情况下,全球OH表现出显着的减少,这会加剧甲烷的辐射强迫。因此,我们强调说,针对持续氧化能力的有针对性的排放减排策略可以使人类世的气候变化减轻。
摘要。二甲基硫(DMS)是从海洋发出的重要痕量气体。长期以来,通过DMS在设置对流层中硫酸盐气溶胶背景方面所扮演的角色,DMS的氧化对全球气候很重要。但是,DMS被氧化的机制非常复杂,尽管研究了数十年,但事实证明难以确切地确定。因此,通常简化了全球化学 - 气候模型中DMS氧化的表示。最新的现场观察和实验室和从头算研究促使人们在理解DMS氧化机制方面做出了重新努力,这对限制了DMS氧化机制的不确定性,并构成了全球化学模型中的氧化机制。在这里,我们以最新的证据为基础,并开发了一种新的DMS机制,以纳入英国化学气溶胶(UKCA)化学模型。我们将我们的新机制(CS2-HPMTF)与UKCA中使用的许多现有机制进行了比较(包括使用模型的CMIP6研究中使用的高度简化的三转反应 - 两种特征机制),以及通过一系列全球和盒子模型实验中的文献中报道的一系列新近开发的机制。全球模型以新的机制运行,使我们能够模拟甲基甲基甲基甲基甲基甲基甲酯(HPMTF)的全球分布,我们计算出的负担为2.6-26 gg S(与0.7-18 gg s的文献范围非常吻合)。我们的全球模型研究表明,与一套表面和飞机观测值相比,我们更新的DMS方案的性能优于UKCA使用的当前计划。We show that the sinks of HPMTF dominate uncertainty in the budget, not the rate of the isomerisation reaction forming it and that, based on the observed DMS / HPMTF ratio from the global surveys during the NASA Atmospheric Tomography mission (ATom), rapid cloud uptake of HPMTF worsens the model– observation comparison.我们的盒子模型实验强调,在文献中使用的机制跨DMS的模拟二级氧化产物中存在显着差异,在这些产物对这些产品的形成速率上的敏感性显着差异;特别是用于甲烷磺酸(MSA)。但是,灵敏度研究强调了对进一步的实验室和观察性约束的必要性。尤其是我们的结果表明,作为优先的长期DMS观察,以更好地限制对系统的高度不确定的输入,并进行实验室研究,以解决(1)HPMTF对
Brandon C. Farmer 1,Holden C. Williams 1,2, Young 3,Jude C. C. C. 2.7,Sun 7,Lance A. Johnson 1.2 *Brandon C. Farmer 1,Holden C. Williams 1,2,Young 3,Jude C. C. C. 2.7,Sun 7,Lance A. Johnson 1.2 *
solid-state Li-S batteries. By hybridizing two-dimensional carbon nitride and N-doped graphene to form CNG with a very high N content, argyrodite decomposition is largely suppressed, which computational and experimental studies show occurs through strong Li-N binding at the solid electrolyte-sulfur host interface. We propose this inhibits the initial oxidation of argyrodite in the indirect process, kinetically limiting Li-ion extraction, and shifting the potential for sulfide ion conversion to sulfur in the first step. This improves SSSB cycling performance by diminishing the build-up of insulating decomposition products at the interface, unlike experienced by carbon materials such as VC and NG. The CNG sulfur
通常挑战芳香碳氢化合物和氯化溶剂的混合物污染的地下水的生物修复,因为这些污染物通过独特的氧化和还原途径降解,因此需要不同的修订和氧化还原条件。在这里,我们提供了含有甲苯和三氯乙烯(TCE)的单阶段处理的概念证明,在管状生物电化学反应器中,称为“生物电井”。甲苯用微生物生物射模(最高150 m mol 1 d 1)降解,其用作末端电子受体,其偏光石墨阳极(þ0.2V vs. she)降解。从微生物驱动的甲苯氧化中衍生的电流导致(在不锈钢阴极处)产生(不锈钢阴极),这使TCE降低了TCE的氯化为氯的中间体(即CIS -DCE,VC和ETH),以500 m eq l 1 d 1 d 1 d 1 d 1 d 1 d 1 D.基于“生物电井”的系统发育和功能基因分析确认了具有厌氧甲苯氧化和TCE还原性脱氯代谢潜力的微生物组的建立。然而,甲苯降解和当前产生是由外部质量运输定位限制的,因此表明现有的进一步过程优化潜力。©2022作者。由Elsevier B.V.代表中国环境科学研究所,中国环境科学学院出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
摘要:在氢产生中,阳极氧的演化反应(OER)限制了能量转化的效率,并且还会影响质子交流膜水电氧化质量的稳定性。广泛使用的基于IR的催化剂从不良活性中产生,而基于RU的催化剂则倾向于在OER条件下溶解。这与晶格氧(晶格氧氧化机制(LOM))的参与有关,这可能导致晶体结构的崩溃并加速活性RU物种的浸出,从而导致工作稳定性较低。在这里,我们开发了Sr -ru -ir三元氧化物电催化剂,可在酸性电解质中获得高活性和稳定性。催化剂在10 mA cm -2时达到了190 mV的超电势,并且在运行1,500小时后,超电势保持在225 mV以下。X射线吸收光谱和18 O同位素标记的在线质谱研究表明,OER期间晶格氧的参与受到Ru-O- ir局部结构的相互作用的抑制,这是如何改善稳定性的情况。通过SR和IR调节活性RU位点的电子结构,以优化OER氧中间体的结合能。■简介